File size: 14,520 Bytes
d2afe6a
 
 
63c19db
a132086
d575bf1
 
59294b2
d2afe6a
 
 
 
 
 
 
 
 
 
a319300
 
 
 
 
 
a34424c
 
 
 
 
 
30481ca
d2afe6a
 
 
 
6e0dbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63634b7
6e0dbd0
 
 
 
 
 
 
 
 
 
 
 
 
5eb9018
75ebbc7
 
aeb7a8a
ceea5d9
80e088c
 
ceea5d9
96e744f
56c3e40
ceea5d9
1327db4
be939f7
ceea5d9
 
 
 
 
 
 
 
 
 
68d30a1
fc84157
ceea5d9
 
 
68d30a1
ceea5d9
 
 
 
 
 
 
 
 
 
68d30a1
ceea5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237f69a
ceea5d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237f69a
 
ceea5d9
467dc60
ceea5d9
 
 
3e44564
9bf82b8
75ebbc7
5eb9018
63c19db
 
 
 
 
 
 
5eb9018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375525b
d2afe6a
 
 
63c19db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import gradio as gr
import os

#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt")
os.system("wget https://github.com/hustvl/YOLOP/raw/main/weights/End-to-end.pth")
#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt")
#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
os.system("wget https://github.com/CAIC-AD/YOLOPv2/releases/download/V0.0.1/yolopv2.pt")

import argparse
import time
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random

#from models.experimental import attempt_load
#from utils.datasets import LoadStreams, LoadImages
#from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
    #scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
#from utils.plots import plot_one_box
#from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
from utils.functions import \
        time_synchronized,select_device, increment_path,\
        scale_coords,xyxy2xywh,non_max_suppression,split_for_trace_model,\
        driving_area_mask,lane_line_mask,plot_one_box,show_seg_result,\
        AverageMeter,\
        LoadImages

from PIL import Image
 

def detect(img,model):
    #with torch.no_grad():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)')
    parser.add_argument('--source', type=str, default='Inference/', help='source')  # file/folder, 0 for webcam
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='display results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--trace', action='store_true', help='trace model')
    opt = parser.parse_args()
    img.save("Inference/test.jpg")
    source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
    save_img = True  # save inference images
    #webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        #('rtsp://', 'rtmp://', 'http://', 'https://'))
    #print(webcam)
    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    #set_logging()
    device = select_device(opt.device)
    #print(device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    inf_time = AverageMeter()
    waste_time = AverageMeter()
    nms_time = AverageMeter()

    # Load model
    #model = attempt_load(weights, map_location=device)  # load FP32 model
    #stride = int(model.stride.max())  # model stride
    #imgsz = check_img_size(imgsz, s=stride)  # check img_size
    print(weights)
    if weights == 'yolop.pt':
        weights = 'End-to-end.pth'
        print(weights)
        from lib.config import cfg
        #from lib.config import update_config
        #from lib.utils.utils import create_logger, select_device, time_synchronized
        from lib.models import get_net
        import torchvision.transforms as transforms
        from lib.dataset.DemoDataset import LoadImages, LoadStreams
        from lib.core.general import non_max_suppression, scale_coords
        from lib.utils.plot import plot_one_box,show_seg_result
        #from lib.core.postprocess import morphological_process, connect_lane
        from tqdm import tqdm
        normalize = transforms.Normalize(
        mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
            )
        
        transform=transforms.Compose([
                    transforms.ToTensor(),
                    normalize,
                ])
        model = get_net(cfg)
        checkpoint = torch.load(weights, map_location= device)
        #print(checkpoint)
        model.load_state_dict(checkpoint['state_dict'])
        model = model.to(device)

        dataset = LoadImages(source, img_size=imgsz)
        bs = 1  # batch_size

        # Get names and colors
        names = model.module.names if hasattr(model, 'module') else model.names
        colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
    
        # Run inference
        t0 = time.time()
    
        vid_path, vid_writer = None, None
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
        model.eval()
    
  
        for i, (path, img, img_det, vid_cap,shapes) in tqdm(enumerate(dataset),total = len(dataset)):
            img = transform(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
            # Inference
            t1 = time_synchronized()
            det_out, da_seg_out,ll_seg_out= model(img)
            t2 = time_synchronized()
            # if i == 0:
            #     print(det_out)
            inf_out, _ = det_out
            inf_time.update(t2-t1,img.size(0))
    
            # Apply NMS
            t3 = time_synchronized()
            det_pred = non_max_suppression(inf_out, conf_thres=opt.conf_thres, iou_thres=opt.iou_thres, classes=None, agnostic=False)
            t4 = time_synchronized()
    
            nms_time.update(t4-t3,img.size(0))
            det=det_pred[0]
    
            #save_path = str(save_dir +'/'+ 'img.jpg')
    
            _, _, height, width = img.shape
            h,w,_=img_det.shape
            pad_w, pad_h = shapes[1][1]
            pad_w = int(pad_w)
            pad_h = int(pad_h)
            ratio = shapes[1][0][1]
    
            da_predict = da_seg_out[:, :, pad_h:(height-pad_h),pad_w:(width-pad_w)]
            da_seg_mask = torch.nn.functional.interpolate(da_predict, scale_factor=int(1/ratio), mode='bilinear')
            _, da_seg_mask = torch.max(da_seg_mask, 1)
            da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy()
            # da_seg_mask = morphological_process(da_seg_mask, kernel_size=7)
    
            
            ll_predict = ll_seg_out[:, :,pad_h:(height-pad_h),pad_w:(width-pad_w)]
            ll_seg_mask = torch.nn.functional.interpolate(ll_predict, scale_factor=int(1/ratio), mode='bilinear')
            _, ll_seg_mask = torch.max(ll_seg_mask, 1)
            ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy()
            # Lane line post-processing
            #ll_seg_mask = morphological_process(ll_seg_mask, kernel_size=7, func_type=cv2.MORPH_OPEN)
            #ll_seg_mask = connect_lane(ll_seg_mask)
    
            img_det = show_seg_result(img_det, (da_seg_mask, ll_seg_mask), _, _, is_demo=True)
    
            if len(det):
                det[:,:4] = scale_coords(img.shape[2:],det[:,:4],img_det.shape).round()
                for *xyxy,conf,cls in reversed(det):
                    label_det_pred = f'{names[int(cls)]} {conf:.2f}'
                    plot_one_box(xyxy, img_det , label=label_det_pred, color=colors[int(cls)], line_thickness=2)
            
     
   
        im0 = img_det

        print('Done. (%.3fs)' % (time.time() - t0))
        print('inf : (%.4fs/frame)   nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))


  
        
    if weights == 'yolopv2.pt':
        from utils.functions import \
        time_synchronized,select_device, increment_path,\
        scale_coords,xyxy2xywh,non_max_suppression,split_for_trace_model,\
        driving_area_mask,lane_line_mask,plot_one_box,show_seg_result,\
        AverageMeter,\
        LoadImages

        stride =32
        model  = torch.jit.load(weights,map_location=device)
        model.eval()
    
        # Set Dataloader
        vid_path, vid_writer = None, None
        dataset = LoadImages(source, img_size=imgsz, stride=stride)
    
        # Run inference
        if device.type != 'cpu':
            model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
        t0 = time.time()
        for path, img, im0s, vid_cap in dataset:
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            print(img.shape)
    
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
    
            # Inference
            t1 = time_synchronized()
            [pred,anchor_grid],seg,ll= model(img)
            t2 = time_synchronized()
    
            # waste time: the incompatibility of  torch.jit.trace causes extra time consumption in demo version 
            # but this problem will not appear in offical version 
            tw1 = time_synchronized()
            pred = split_for_trace_model(pred,anchor_grid)
            tw2 = time_synchronized()
    
            # Apply NMS
            t3 = time_synchronized()
            pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
            t4 = time_synchronized()
    
            da_seg_mask = driving_area_mask(seg)
            ll_seg_mask = lane_line_mask(ll)
                
            print(da_seg_mask.shape)
            # Process detections
            for i, det in enumerate(pred):  # detections per image
              
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
    
                p = Path(p)  # to Path
                save_path = str(save_dir / p.name)  # img.jpg
                txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
                s += '%gx%g ' % img.shape[2:]  # print string
                gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
    
                    # Print results
                    #for c in det[:, -1].unique():
                        #n = (det[:, -1] == c).sum()  # detections per class
                        #s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
    
                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        if save_txt:  # Write to file
                            xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                            line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                            with open(txt_path + '.txt', 'a') as f:
                                f.write(('%g ' * len(line)).rstrip() % line + '\n')
    
                        if save_img :  # Add bbox to image
                            plot_one_box(xyxy, im0, line_thickness=3)
    
                # Print time (inference)
                print(f'{s}Done. ({t2 - t1:.3f}s)')
                show_seg_result(im0, (da_seg_mask,ll_seg_mask), is_demo=True)
    
                # Save results (image with detections)
                if save_img:
                    if dataset.mode == 'image':
                        cv2.imwrite(save_path, im0)
                        print(f" The image with the result is saved in: {save_path}")
                    else:  # 'video' or 'stream'
                        if vid_path != save_path:  # new video
                            vid_path = save_path
                            if isinstance(vid_writer, cv2.VideoWriter):
                                vid_writer.release()  # release previous video writer
                            if vid_cap:  # video
                                fps = vid_cap.get(cv2.CAP_PROP_FPS)
                                #w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                                #h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                                w,h = im0.shape[1], im0.shape[0]
                            else:  # stream
                                fps, w, h = 30, im0.shape[1], im0.shape[0]
                                save_path += '.mp4'
                            vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                        vid_writer.write(im0)

    #inf_time.update(t2-t1,img.size(0))
    #nms_time.update(t4-t3,img.size(0))
    #waste_time.update(tw2-tw1,img.size(0))
    #print('inf : (%.4fs/frame)   nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
    #print(f'Done. ({time.time() - t0:.3f}s)')
    #print(im0.shape)
    
    return Image.fromarray(im0[:,:,::-1])

   
gr.Interface(detect,[gr.Image(type="pil"),gr.Dropdown(choices=["yolopv2","yolop"])], gr.Image(type="pil"),title="Yolopv2",examples=[["example.jpeg", "yolopv2"]],description="demo for <a href='https://github.com/CAIC-AD/YOLOPv2' style='text-decoration: underline' target='_blank'>YOLOPv2</a> 🚀: Better, Faster, Stronger for Panoptic driving Perception").launch()