hank1996 commited on
Commit
ceea5d9
·
1 Parent(s): 9bf82b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +116 -0
app.py CHANGED
@@ -84,6 +84,122 @@ def detect(img,model):
84
  print(weights)
85
  if weights == 'yolop.pt':
86
  weights = 'End-to-end.pth'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
 
89
 
 
84
  print(weights)
85
  if weights == 'yolop.pt':
86
  weights = 'End-to-end.pth'
87
+ from lib.config import cfg
88
+ from lib.config import update_config
89
+ from lib.utils.utils import create_logger, select_device, time_synchronized
90
+ from lib.models import get_net
91
+ from lib.dataset import LoadImages, LoadStreams
92
+ from lib.core.general import non_max_suppression, scale_coords
93
+ from lib.utils import plot_one_box,show_seg_result
94
+ from lib.core.function import AverageMeter
95
+ from lib.core.postprocess import morphological_process, connect_lane
96
+ from tqdm import tqdm
97
+ normalize = transforms.Normalize(
98
+ mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
99
+ )
100
+
101
+ transform=transforms.Compose([
102
+ transforms.ToTensor(),
103
+ normalize,
104
+ ])
105
+ model = get_net(cfg)
106
+ checkpoint = torch.load(opt.weights, map_location= device)
107
+ model.load_state_dict(checkpoint['state_dict'])
108
+ model = model.to(device)
109
+
110
+ dataset = LoadImages(opt.source, img_size=opt.img_size)
111
+ bs = 1 # batch_size
112
+
113
+ # Get names and colors
114
+ names = model.module.names if hasattr(model, 'module') else model.names
115
+ colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
116
+
117
+ # Run inference
118
+ t0 = time.time()
119
+
120
+ vid_path, vid_writer = None, None
121
+ img = torch.zeros((1, 3, opt.img_size, opt.img_size), device=device) # init img
122
+ _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
123
+ model.eval()
124
+
125
+
126
+ for i, (path, img, img_det, vid_cap,shapes) in tqdm(enumerate(dataset),total = len(dataset)):
127
+ img = transform(img).to(device)
128
+ img = img.half() if half else img.float() # uint8 to fp16/32
129
+ if img.ndimension() == 3:
130
+ img = img.unsqueeze(0)
131
+ # Inference
132
+ t1 = time_synchronized()
133
+ det_out, da_seg_out,ll_seg_out= model(img)
134
+ t2 = time_synchronized()
135
+ # if i == 0:
136
+ # print(det_out)
137
+ inf_out, _ = det_out
138
+ inf_time.update(t2-t1,img.size(0))
139
+
140
+ # Apply NMS
141
+ t3 = time_synchronized()
142
+ det_pred = non_max_suppression(inf_out, conf_thres=opt.conf_thres, iou_thres=opt.iou_thres, classes=None, agnostic=False)
143
+ t4 = time_synchronized()
144
+
145
+ nms_time.update(t4-t3,img.size(0))
146
+ det=det_pred[0]
147
+
148
+ save_path = str(opt.save_dir +'/'+ Path(path).name) if dataset.mode != 'stream' else str(opt.save_dir + '/' + "web.mp4")
149
+
150
+ _, _, height, width = img.shape
151
+ h,w,_=img_det.shape
152
+ pad_w, pad_h = shapes[1][1]
153
+ pad_w = int(pad_w)
154
+ pad_h = int(pad_h)
155
+ ratio = shapes[1][0][1]
156
+
157
+ da_predict = da_seg_out[:, :, pad_h:(height-pad_h),pad_w:(width-pad_w)]
158
+ da_seg_mask = torch.nn.functional.interpolate(da_predict, scale_factor=int(1/ratio), mode='bilinear')
159
+ _, da_seg_mask = torch.max(da_seg_mask, 1)
160
+ da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy()
161
+ # da_seg_mask = morphological_process(da_seg_mask, kernel_size=7)
162
+
163
+
164
+ ll_predict = ll_seg_out[:, :,pad_h:(height-pad_h),pad_w:(width-pad_w)]
165
+ ll_seg_mask = torch.nn.functional.interpolate(ll_predict, scale_factor=int(1/ratio), mode='bilinear')
166
+ _, ll_seg_mask = torch.max(ll_seg_mask, 1)
167
+ ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy()
168
+ # Lane line post-processing
169
+ #ll_seg_mask = morphological_process(ll_seg_mask, kernel_size=7, func_type=cv2.MORPH_OPEN)
170
+ #ll_seg_mask = connect_lane(ll_seg_mask)
171
+
172
+ img_det = show_seg_result(img_det, (da_seg_mask, ll_seg_mask), _, _, is_demo=True)
173
+
174
+ if len(det):
175
+ det[:,:4] = scale_coords(img.shape[2:],det[:,:4],img_det.shape).round()
176
+ for *xyxy,conf,cls in reversed(det):
177
+ label_det_pred = f'{names[int(cls)]} {conf:.2f}'
178
+ plot_one_box(xyxy, img_det , label=label_det_pred, color=colors[int(cls)], line_thickness=2)
179
+
180
+ if dataset.mode == 'images':
181
+ cv2.imwrite(save_path,img_det)
182
+
183
+ elif dataset.mode == 'video':
184
+ if vid_path != save_path: # new video
185
+ vid_path = save_path
186
+ if isinstance(vid_writer, cv2.VideoWriter):
187
+ vid_writer.release() # release previous video writer
188
+
189
+ fourcc = 'mp4v' # output video codec
190
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
191
+ h,w,_=img_det.shape
192
+ vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
193
+ vid_writer.write(img_det)
194
+
195
+ else:
196
+ cv2.imshow('image', img_det)
197
+ cv2.waitKey(1) # 1 millisecond
198
+ im0 = img_det
199
+ print('Results saved to %s' % Path(opt.save_dir))
200
+ print('Done. (%.3fs)' % (time.time() - t0))
201
+ print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
202
+
203
 
204
 
205