File size: 10,951 Bytes
da8afdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273


import math
import numpy as np
import torch
import torch.nn as nn
from PIL import Image, ImageDraw
import torch.nn.functional as F


def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class DepthSeperabelConv2d(nn.Module):
    """
    DepthSeperable Convolution 2d with residual connection
    """

    def __init__(self, inplanes, planes, kernel_size=3, stride=1, downsample=None, act=True):
        super(DepthSeperabelConv2d, self).__init__()
        self.depthwise = nn.Sequential(
            nn.Conv2d(inplanes, inplanes, kernel_size, stride=stride, groups=inplanes, padding=kernel_size//2, bias=False),
            nn.BatchNorm2d(inplanes, momentum=BN_MOMENTUM)
        )
        # self.depthwise = nn.Conv2d(inplanes, inplanes, kernel_size, stride=stride, groups=inplanes, padding=1, bias=False)
        # self.pointwise = nn.Conv2d(inplanes, planes, 1, bias=False)

        self.pointwise = nn.Sequential(
            nn.Conv2d(inplanes, planes, 1, bias=False),
            nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
        )
        self.downsample = downsample
        self.stride = stride
        try:
            self.act = Hardswish() if act else nn.Identity()
        except:
            self.act = nn.Identity()

    def forward(self, x):
        #residual = x

        out = self.depthwise(x)
        out = self.act(out)
        out = self.pointwise(out)

        if self.downsample is not None:
            residual = self.downsample(x)
        out = self.act(out)

        return out



class SharpenConv(nn.Module):
    # SharpenConv convolution
    def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super(SharpenConv, self).__init__()
        sobel_kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype='float32')
        kenel_weight = np.vstack([sobel_kernel]*c2*c1).reshape(c2,c1,3,3)
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.conv.weight.data = torch.from_numpy(kenel_weight)
        self.conv.weight.requires_grad = False
        self.bn = nn.BatchNorm2d(c2)
        try:
            self.act = Hardswish() if act else nn.Identity()
        except:
            self.act = nn.Identity()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def fuseforward(self, x):
        return self.act(self.conv(x))


class Hardswish(nn.Module):  # export-friendly version of nn.Hardswish()
    @staticmethod
    def forward(x):
        # return x * F.hardsigmoid(x)  # for torchscript and CoreML
        return x * F.hardtanh(x + 3, 0., 6.) / 6.  # for torchscript, CoreML and ONNX


class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super(Conv, self).__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        try:
            self.act = Hardswish() if act else nn.Identity()
        except:
            self.act = nn.Identity()

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def fuseforward(self, x):
        return self.act(self.conv(x))


class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super(Bottleneck, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class BottleneckCSP(nn.Module):
    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super(BottleneckCSP, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(2 * c_, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
        self.act = nn.LeakyReLU(0.1, inplace=True)
        self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])

    def forward(self, x):
        y1 = self.cv3(self.m(self.cv1(x)))
        y2 = self.cv2(x)
        return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))


class SPP(nn.Module):
    # Spatial pyramid pooling layer used in YOLOv3-SPP
    def __init__(self, c1, c2, k=(5, 9, 13)):
        super(SPP, self).__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

    def forward(self, x):
        x = self.cv1(x)
        return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))


class Focus(nn.Module):
    # Focus wh information into c-space
    # slice concat conv
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super(Focus, self).__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act)

    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
        return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))


class Concat(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, dimension=1):
        super(Concat, self).__init__()
        self.d = dimension

    def forward(self, x):
        """ print("***********************")
        for f in x:
            print(f.shape) """
        return torch.cat(x, self.d)


class Detect(nn.Module):
    stride = None  # strides computed during build

    def __init__(self, nc=13, anchors=(), ch=()):  # detection layer
        super(Detect, self).__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor 85
        self.nl = len(anchors)  # number of detection layers 3
        self.na = len(anchors[0]) // 2  # number of anchors 3
        self.grid = [torch.zeros(1)] * self.nl  # init grid 
        a = torch.tensor(anchors).float().view(self.nl, -1, 2)
        self.register_buffer('anchors', a)  # shape(nl,na,2)
        self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2))  # shape(nl,1,na,1,1,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv  

    def forward(self, x):
        z = []  # inference output
        for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
            # print(str(i)+str(x[i].shape))
            bs, _, ny, nx = x[i].shape  # x(bs,255,w,w) to x(bs,3,w,w,85)
            x[i]=x[i].view(bs, self.na, self.no, ny*nx).permute(0, 1, 3, 2).view(bs, self.na, ny, nx, self.no).contiguous()
            # x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
            # print(str(i)+str(x[i].shape))

            if not self.training:  # inference
                if self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
                y = x[i].sigmoid()
                #print("**")
                #print(y.shape) #[1, 3, w, h, 85]
                #print(self.grid[i].shape) #[1, 3, w, h, 2]
                y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i]  # xy
                y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                """print("**")
                print(y.shape)  #[1, 3, w, h, 85]
                print(y.view(bs, -1, self.no).shape) #[1, 3*w*h, 85]"""
                z.append(y.view(bs, -1, self.no))
        return x if self.training else (torch.cat(z, 1), x)

    @staticmethod
    def _make_grid(nx=20, ny=20):
        
        yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
        return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()


"""class Detections:
    # detections class for YOLOv5 inference results
    def __init__(self, imgs, pred, names=None):
        super(Detections, self).__init__()
        d = pred[0].device  # device
        gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs]  # normalizations
        self.imgs = imgs  # list of images as numpy arrays
        self.pred = pred  # list of tensors pred[0] = (xyxy, conf, cls)
        self.names = names  # class names
        self.xyxy = pred  # xyxy pixels
        self.xywh = [xyxy2xywh(x) for x in pred]  # xywh pixels
        self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)]  # xyxy normalized
        self.xywhn = [x / g for x, g in zip(self.xywh, gn)]  # xywh normalized
        self.n = len(self.pred)
    def display(self, pprint=False, show=False, save=False):
        colors = color_list()
        for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
            str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
            if pred is not None:
                for c in pred[:, -1].unique():
                    n = (pred[:, -1] == c).sum()  # detections per class
                    str += f'{n} {self.names[int(c)]}s, '  # add to string
                if show or save:
                    img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img  # from np
                    for *box, conf, cls in pred:  # xyxy, confidence, class
                        # str += '%s %.2f, ' % (names[int(cls)], conf)  # label
                        ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10])  # plot
            if save:
                f = f'results{i}.jpg'
                str += f"saved to '{f}'"
                img.save(f)  # save
            if show:
                img.show(f'Image {i}')  # show
            if pprint:
                print(str)
    def print(self):
        self.display(pprint=True)  # print results
    def show(self):
        self.display(show=True)  # show results
    def save(self):
        self.display(save=True)  # save results
    def __len__(self):
        return self.n
    def tolist(self):
        # return a list of Detections objects, i.e. 'for result in results.tolist():'
        x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
        for d in x:
            for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
                setattr(d, k, getattr(d, k)[0])  # pop out of list"""