Spaces:
Sleeping
Sleeping
Create new file
Browse files- lib/models/common.py +272 -0
lib/models/common.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import math
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from PIL import Image, ImageDraw
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
|
11 |
+
def autopad(k, p=None): # kernel, padding
|
12 |
+
# Pad to 'same'
|
13 |
+
if p is None:
|
14 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
15 |
+
return p
|
16 |
+
|
17 |
+
|
18 |
+
class DepthSeperabelConv2d(nn.Module):
|
19 |
+
"""
|
20 |
+
DepthSeperable Convolution 2d with residual connection
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, inplanes, planes, kernel_size=3, stride=1, downsample=None, act=True):
|
24 |
+
super(DepthSeperabelConv2d, self).__init__()
|
25 |
+
self.depthwise = nn.Sequential(
|
26 |
+
nn.Conv2d(inplanes, inplanes, kernel_size, stride=stride, groups=inplanes, padding=kernel_size//2, bias=False),
|
27 |
+
nn.BatchNorm2d(inplanes, momentum=BN_MOMENTUM)
|
28 |
+
)
|
29 |
+
# self.depthwise = nn.Conv2d(inplanes, inplanes, kernel_size, stride=stride, groups=inplanes, padding=1, bias=False)
|
30 |
+
# self.pointwise = nn.Conv2d(inplanes, planes, 1, bias=False)
|
31 |
+
|
32 |
+
self.pointwise = nn.Sequential(
|
33 |
+
nn.Conv2d(inplanes, planes, 1, bias=False),
|
34 |
+
nn.BatchNorm2d(planes, momentum=BN_MOMENTUM)
|
35 |
+
)
|
36 |
+
self.downsample = downsample
|
37 |
+
self.stride = stride
|
38 |
+
try:
|
39 |
+
self.act = Hardswish() if act else nn.Identity()
|
40 |
+
except:
|
41 |
+
self.act = nn.Identity()
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
#residual = x
|
45 |
+
|
46 |
+
out = self.depthwise(x)
|
47 |
+
out = self.act(out)
|
48 |
+
out = self.pointwise(out)
|
49 |
+
|
50 |
+
if self.downsample is not None:
|
51 |
+
residual = self.downsample(x)
|
52 |
+
out = self.act(out)
|
53 |
+
|
54 |
+
return out
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
class SharpenConv(nn.Module):
|
59 |
+
# SharpenConv convolution
|
60 |
+
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
61 |
+
super(SharpenConv, self).__init__()
|
62 |
+
sobel_kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype='float32')
|
63 |
+
kenel_weight = np.vstack([sobel_kernel]*c2*c1).reshape(c2,c1,3,3)
|
64 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
65 |
+
self.conv.weight.data = torch.from_numpy(kenel_weight)
|
66 |
+
self.conv.weight.requires_grad = False
|
67 |
+
self.bn = nn.BatchNorm2d(c2)
|
68 |
+
try:
|
69 |
+
self.act = Hardswish() if act else nn.Identity()
|
70 |
+
except:
|
71 |
+
self.act = nn.Identity()
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
return self.act(self.bn(self.conv(x)))
|
75 |
+
|
76 |
+
def fuseforward(self, x):
|
77 |
+
return self.act(self.conv(x))
|
78 |
+
|
79 |
+
|
80 |
+
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
|
81 |
+
@staticmethod
|
82 |
+
def forward(x):
|
83 |
+
# return x * F.hardsigmoid(x) # for torchscript and CoreML
|
84 |
+
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
|
85 |
+
|
86 |
+
|
87 |
+
class Conv(nn.Module):
|
88 |
+
# Standard convolution
|
89 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
90 |
+
super(Conv, self).__init__()
|
91 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
92 |
+
self.bn = nn.BatchNorm2d(c2)
|
93 |
+
try:
|
94 |
+
self.act = Hardswish() if act else nn.Identity()
|
95 |
+
except:
|
96 |
+
self.act = nn.Identity()
|
97 |
+
|
98 |
+
def forward(self, x):
|
99 |
+
return self.act(self.bn(self.conv(x)))
|
100 |
+
|
101 |
+
def fuseforward(self, x):
|
102 |
+
return self.act(self.conv(x))
|
103 |
+
|
104 |
+
|
105 |
+
class Bottleneck(nn.Module):
|
106 |
+
# Standard bottleneck
|
107 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
108 |
+
super(Bottleneck, self).__init__()
|
109 |
+
c_ = int(c2 * e) # hidden channels
|
110 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
111 |
+
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
112 |
+
self.add = shortcut and c1 == c2
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
116 |
+
|
117 |
+
|
118 |
+
class BottleneckCSP(nn.Module):
|
119 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
120 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
121 |
+
super(BottleneckCSP, self).__init__()
|
122 |
+
c_ = int(c2 * e) # hidden channels
|
123 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
124 |
+
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
125 |
+
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
126 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
127 |
+
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
128 |
+
self.act = nn.LeakyReLU(0.1, inplace=True)
|
129 |
+
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
130 |
+
|
131 |
+
def forward(self, x):
|
132 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
133 |
+
y2 = self.cv2(x)
|
134 |
+
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
135 |
+
|
136 |
+
|
137 |
+
class SPP(nn.Module):
|
138 |
+
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
139 |
+
def __init__(self, c1, c2, k=(5, 9, 13)):
|
140 |
+
super(SPP, self).__init__()
|
141 |
+
c_ = c1 // 2 # hidden channels
|
142 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
143 |
+
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
144 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
145 |
+
|
146 |
+
def forward(self, x):
|
147 |
+
x = self.cv1(x)
|
148 |
+
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
149 |
+
|
150 |
+
|
151 |
+
class Focus(nn.Module):
|
152 |
+
# Focus wh information into c-space
|
153 |
+
# slice concat conv
|
154 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
155 |
+
super(Focus, self).__init__()
|
156 |
+
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
157 |
+
|
158 |
+
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
159 |
+
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
|
160 |
+
|
161 |
+
|
162 |
+
class Concat(nn.Module):
|
163 |
+
# Concatenate a list of tensors along dimension
|
164 |
+
def __init__(self, dimension=1):
|
165 |
+
super(Concat, self).__init__()
|
166 |
+
self.d = dimension
|
167 |
+
|
168 |
+
def forward(self, x):
|
169 |
+
""" print("***********************")
|
170 |
+
for f in x:
|
171 |
+
print(f.shape) """
|
172 |
+
return torch.cat(x, self.d)
|
173 |
+
|
174 |
+
|
175 |
+
class Detect(nn.Module):
|
176 |
+
stride = None # strides computed during build
|
177 |
+
|
178 |
+
def __init__(self, nc=13, anchors=(), ch=()): # detection layer
|
179 |
+
super(Detect, self).__init__()
|
180 |
+
self.nc = nc # number of classes
|
181 |
+
self.no = nc + 5 # number of outputs per anchor 85
|
182 |
+
self.nl = len(anchors) # number of detection layers 3
|
183 |
+
self.na = len(anchors[0]) // 2 # number of anchors 3
|
184 |
+
self.grid = [torch.zeros(1)] * self.nl # init grid
|
185 |
+
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
186 |
+
self.register_buffer('anchors', a) # shape(nl,na,2)
|
187 |
+
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
188 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
189 |
+
|
190 |
+
def forward(self, x):
|
191 |
+
z = [] # inference output
|
192 |
+
for i in range(self.nl):
|
193 |
+
x[i] = self.m[i](x[i]) # conv
|
194 |
+
# print(str(i)+str(x[i].shape))
|
195 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,w,w) to x(bs,3,w,w,85)
|
196 |
+
x[i]=x[i].view(bs, self.na, self.no, ny*nx).permute(0, 1, 3, 2).view(bs, self.na, ny, nx, self.no).contiguous()
|
197 |
+
# x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
198 |
+
# print(str(i)+str(x[i].shape))
|
199 |
+
|
200 |
+
if not self.training: # inference
|
201 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
202 |
+
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
203 |
+
y = x[i].sigmoid()
|
204 |
+
#print("**")
|
205 |
+
#print(y.shape) #[1, 3, w, h, 85]
|
206 |
+
#print(self.grid[i].shape) #[1, 3, w, h, 2]
|
207 |
+
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
|
208 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
209 |
+
"""print("**")
|
210 |
+
print(y.shape) #[1, 3, w, h, 85]
|
211 |
+
print(y.view(bs, -1, self.no).shape) #[1, 3*w*h, 85]"""
|
212 |
+
z.append(y.view(bs, -1, self.no))
|
213 |
+
return x if self.training else (torch.cat(z, 1), x)
|
214 |
+
|
215 |
+
@staticmethod
|
216 |
+
def _make_grid(nx=20, ny=20):
|
217 |
+
|
218 |
+
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
219 |
+
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
220 |
+
|
221 |
+
|
222 |
+
"""class Detections:
|
223 |
+
# detections class for YOLOv5 inference results
|
224 |
+
def __init__(self, imgs, pred, names=None):
|
225 |
+
super(Detections, self).__init__()
|
226 |
+
d = pred[0].device # device
|
227 |
+
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
|
228 |
+
self.imgs = imgs # list of images as numpy arrays
|
229 |
+
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
230 |
+
self.names = names # class names
|
231 |
+
self.xyxy = pred # xyxy pixels
|
232 |
+
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
233 |
+
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
234 |
+
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
235 |
+
self.n = len(self.pred)
|
236 |
+
def display(self, pprint=False, show=False, save=False):
|
237 |
+
colors = color_list()
|
238 |
+
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
|
239 |
+
str = f'Image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
|
240 |
+
if pred is not None:
|
241 |
+
for c in pred[:, -1].unique():
|
242 |
+
n = (pred[:, -1] == c).sum() # detections per class
|
243 |
+
str += f'{n} {self.names[int(c)]}s, ' # add to string
|
244 |
+
if show or save:
|
245 |
+
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
|
246 |
+
for *box, conf, cls in pred: # xyxy, confidence, class
|
247 |
+
# str += '%s %.2f, ' % (names[int(cls)], conf) # label
|
248 |
+
ImageDraw.Draw(img).rectangle(box, width=4, outline=colors[int(cls) % 10]) # plot
|
249 |
+
if save:
|
250 |
+
f = f'results{i}.jpg'
|
251 |
+
str += f"saved to '{f}'"
|
252 |
+
img.save(f) # save
|
253 |
+
if show:
|
254 |
+
img.show(f'Image {i}') # show
|
255 |
+
if pprint:
|
256 |
+
print(str)
|
257 |
+
def print(self):
|
258 |
+
self.display(pprint=True) # print results
|
259 |
+
def show(self):
|
260 |
+
self.display(show=True) # show results
|
261 |
+
def save(self):
|
262 |
+
self.display(save=True) # save results
|
263 |
+
def __len__(self):
|
264 |
+
return self.n
|
265 |
+
def tolist(self):
|
266 |
+
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
267 |
+
x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
|
268 |
+
for d in x:
|
269 |
+
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
270 |
+
setattr(d, k, getattr(d, k)[0]) # pop out of list"""
|
271 |
+
|
272 |
+
|