File size: 23,017 Bytes
de444ec
 
 
 
 
 
 
 
 
 
1377996
de444ec
 
 
 
d3535f4
707e0f6
1377996
de444ec
d3535f4
 
 
 
 
 
 
 
 
 
de444ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377996
de444ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import torch
from torch import tensor
import torch.nn as nn
import sys,os
import math
import sys
sys.path.append(os.getcwd())
#sys.path.append("lib/models")
#sys.path.append("lib/utils")
#sys.path.append("/workspace/wh/projects/DaChuang")
#from lib.utils import initialize_weights
# from lib.models.common2 import DepthSeperabelConv2d as Conv
# from lib.models.common2 import SPP, Bottleneck, BottleneckCSP, Focus, Concat, Detect
from lib.models.common import Conv, SPP, Bottleneck, BottleneckCSP, Focus, Concat, Detect, SharpenConv
from torch.nn import Upsample
#from lib.utils import check_anchor_order
#from lib.core.evaluate import SegmentationMetric
#from lib.utils.utils import time_synchronized

def check_anchor_order(m):
    # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
    a = m.anchor_grid.prod(-1).view(-1)  # anchor area
    da = a[-1] - a[0]  # delta a
    ds = m.stride[-1] - m.stride[0]  # delta s
    if da.sign() != ds.sign():  # same order
        print('Reversing anchor order')
        m.anchors[:] = m.anchors.flip(0)
        m.anchor_grid[:] = m.anchor_grid.flip(0)

"""
MCnet_SPP = [
[ -1, Focus, [3, 32, 3]],
[ -1, Conv, [32, 64, 3, 2]],
[ -1, BottleneckCSP, [64, 64, 1]],
[ -1, Conv, [64, 128, 3, 2]],
[ -1, BottleneckCSP, [128, 128, 3]],
[ -1, Conv, [128, 256, 3, 2]],
[ -1, BottleneckCSP, [256, 256, 3]],
[ -1, Conv, [256, 512, 3, 2]],
[ -1, SPP, [512, 512, [5, 9, 13]]],
[ -1, BottleneckCSP, [512, 512, 1, False]],
[ -1, Conv,[512, 256, 1, 1]],
[ -1, Upsample, [None, 2, 'nearest']],
[ [-1, 6], Concat, [1]],
[ -1, BottleneckCSP, [512, 256, 1, False]],
[ -1, Conv, [256, 128, 1, 1]],
[ -1, Upsample, [None, 2, 'nearest']],
[ [-1,4], Concat, [1]],
[ -1, BottleneckCSP, [256, 128, 1, False]],
[ -1, Conv, [128, 128, 3, 2]],
[ [-1, 14], Concat, [1]],
[ -1, BottleneckCSP, [256, 256, 1, False]],
[ -1, Conv, [256, 256, 3, 2]],
[ [-1, 10], Concat, [1]],
[ -1, BottleneckCSP, [512, 512, 1, False]],
# [ [17, 20, 23], Detect,  [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]],
[ [17, 20, 23], Detect,  [13, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]],
[ 17, Conv, [128, 64, 3, 1]],
[ -1, Upsample, [None, 2, 'nearest']],
[ [-1,2], Concat, [1]],
[ -1, BottleneckCSP, [128, 64, 1, False]],
[ -1, Conv, [64, 32, 3, 1]],
[ -1, Upsample, [None, 2, 'nearest']],
[ -1, Conv, [32, 16, 3, 1]],
[ -1, BottleneckCSP, [16, 8, 1, False]],
[ -1, Upsample, [None, 2, 'nearest']],
[ -1, SPP, [8, 2, [5, 9, 13]]] #segmentation output
]
# [2,6,3,9,5,13], [7,19,11,26,17,39], [28,64,44,103,61,183]
MCnet_0 = [
[ -1, Focus, [3, 32, 3]],
[ -1, Conv, [32, 64, 3, 2]],
[ -1, BottleneckCSP, [64, 64, 1]],
[ -1, Conv, [64, 128, 3, 2]],
[ -1, BottleneckCSP, [128, 128, 3]],
[ -1, Conv, [128, 256, 3, 2]],
[ -1, BottleneckCSP, [256, 256, 3]],
[ -1, Conv, [256, 512, 3, 2]],
[ -1, SPP, [512, 512, [5, 9, 13]]],
[ -1, BottleneckCSP, [512, 512, 1, False]],
[ -1, Conv,[512, 256, 1, 1]],
[ -1, Upsample, [None, 2, 'nearest']],
[ [-1, 6], Concat, [1]],
[ -1, BottleneckCSP, [512, 256, 1, False]],
[ -1, Conv, [256, 128, 1, 1]],
[ -1, Upsample, [None, 2, 'nearest']],
[ [-1,4], Concat, [1]],
[ -1, BottleneckCSP, [256, 128, 1, False]],
[ -1, Conv, [128, 128, 3, 2]],
[ [-1, 14], Concat, [1]],
[ -1, BottleneckCSP, [256, 256, 1, False]],
[ -1, Conv, [256, 256, 3, 2]],
[ [-1, 10], Concat, [1]],
[ -1, BottleneckCSP, [512, 512, 1, False]],
[ [17, 20, 23], Detect,  [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24
[ 16, Conv, [128, 64, 3, 1]],
[ -1, Upsample, [None, 2, 'nearest']],
[ [-1,2], Concat, [1]],
[ -1, BottleneckCSP, [128, 64, 1, False]],
[ -1, Conv, [64, 32, 3, 1]],
[ -1, Upsample, [None, 2, 'nearest']],
[ -1, Conv, [32, 16, 3, 1]],
[ -1, BottleneckCSP, [16, 8, 1, False]],
[ -1, Upsample, [None, 2, 'nearest']],
[ -1, Conv, [8, 2, 3, 1]], #Driving area segmentation output
[ 16, Conv, [128, 64, 3, 1]],
[ -1, Upsample, [None, 2, 'nearest']],
[ [-1,2], Concat, [1]],
[ -1, BottleneckCSP, [128, 64, 1, False]],
[ -1, Conv, [64, 32, 3, 1]],
[ -1, Upsample, [None, 2, 'nearest']],
[ -1, Conv, [32, 16, 3, 1]],
[ -1, BottleneckCSP, [16, 8, 1, False]],
[ -1, Upsample, [None, 2, 'nearest']],
[ -1, Conv, [8, 2, 3, 1]], #Lane line segmentation output
]
# The lane line and the driving area segment branches share information with each other
MCnet_share = [
[ -1, Focus, [3, 32, 3]],   #0
[ -1, Conv, [32, 64, 3, 2]],    #1
[ -1, BottleneckCSP, [64, 64, 1]],  #2
[ -1, Conv, [64, 128, 3, 2]],   #3
[ -1, BottleneckCSP, [128, 128, 3]],    #4
[ -1, Conv, [128, 256, 3, 2]],  #5
[ -1, BottleneckCSP, [256, 256, 3]],    #6
[ -1, Conv, [256, 512, 3, 2]],  #7
[ -1, SPP, [512, 512, [5, 9, 13]]],     #8
[ -1, BottleneckCSP, [512, 512, 1, False]],     #9
[ -1, Conv,[512, 256, 1, 1]],   #10
[ -1, Upsample, [None, 2, 'nearest']],  #11
[ [-1, 6], Concat, [1]],    #12
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
[ -1, Conv, [256, 128, 1, 1]],  #14
[ -1, Upsample, [None, 2, 'nearest']],  #15
[ [-1,4], Concat, [1]],     #16
[ -1, BottleneckCSP, [256, 128, 1, False]],     #17
[ -1, Conv, [128, 128, 3, 2]],      #18
[ [-1, 14], Concat, [1]],       #19
[ -1, BottleneckCSP, [256, 256, 1, False]],     #20
[ -1, Conv, [256, 256, 3, 2]],      #21
[ [-1, 10], Concat, [1]],   #22
[ -1, BottleneckCSP, [512, 512, 1, False]],     #23
[ [17, 20, 23], Detect,  [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24
[ 16, Conv, [256, 64, 3, 1]],   #25
[ -1, Upsample, [None, 2, 'nearest']],  #26
[ [-1,2], Concat, [1]],  #27
[ -1, BottleneckCSP, [128, 64, 1, False]],  #28
[ -1, Conv, [64, 32, 3, 1]],    #29
[ -1, Upsample, [None, 2, 'nearest']],  #30
[ -1, Conv, [32, 16, 3, 1]],    #31
[ -1, BottleneckCSP, [16, 8, 1, False]],    #32 driving area segment neck
[ 16, Conv, [256, 64, 3, 1]],   #33
[ -1, Upsample, [None, 2, 'nearest']],  #34
[ [-1,2], Concat, [1]], #35
[ -1, BottleneckCSP, [128, 64, 1, False]],  #36
[ -1, Conv, [64, 32, 3, 1]],    #37
[ -1, Upsample, [None, 2, 'nearest']],  #38
[ -1, Conv, [32, 16, 3, 1]],    #39   
[ -1, BottleneckCSP, [16, 8, 1, False]],    #40 lane line segment neck
[ [31,39], Concat, [1]],    #41
[ -1, Conv, [32, 8, 3, 1]],     #42    Share_Block
[ [32,42], Concat, [1]],     #43
[ -1, Upsample, [None, 2, 'nearest']],  #44
[ -1, Conv, [16, 2, 3, 1]], #45 Driving area segmentation output
[ [40,42], Concat, [1]],    #46
[ -1, Upsample, [None, 2, 'nearest']],  #47
[ -1, Conv, [16, 2, 3, 1]] #48Lane line segmentation output
]
# The lane line and the driving area segment branches without share information with each other
MCnet_no_share = [
[ -1, Focus, [3, 32, 3]],   #0
[ -1, Conv, [32, 64, 3, 2]],    #1
[ -1, BottleneckCSP, [64, 64, 1]],  #2
[ -1, Conv, [64, 128, 3, 2]],   #3
[ -1, BottleneckCSP, [128, 128, 3]],    #4
[ -1, Conv, [128, 256, 3, 2]],  #5
[ -1, BottleneckCSP, [256, 256, 3]],    #6
[ -1, Conv, [256, 512, 3, 2]],  #7
[ -1, SPP, [512, 512, [5, 9, 13]]],     #8
[ -1, BottleneckCSP, [512, 512, 1, False]],     #9
[ -1, Conv,[512, 256, 1, 1]],   #10
[ -1, Upsample, [None, 2, 'nearest']],  #11
[ [-1, 6], Concat, [1]],    #12
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
[ -1, Conv, [256, 128, 1, 1]],  #14
[ -1, Upsample, [None, 2, 'nearest']],  #15
[ [-1,4], Concat, [1]],     #16
[ -1, BottleneckCSP, [256, 128, 1, False]],     #17
[ -1, Conv, [128, 128, 3, 2]],      #18
[ [-1, 14], Concat, [1]],       #19
[ -1, BottleneckCSP, [256, 256, 1, False]],     #20
[ -1, Conv, [256, 256, 3, 2]],      #21
[ [-1, 10], Concat, [1]],   #22
[ -1, BottleneckCSP, [512, 512, 1, False]],     #23
[ [17, 20, 23], Detect,  [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24
[ 16, Conv, [256, 64, 3, 1]],   #25
[ -1, Upsample, [None, 2, 'nearest']],  #26
[ [-1,2], Concat, [1]],  #27
[ -1, BottleneckCSP, [128, 64, 1, False]],  #28
[ -1, Conv, [64, 32, 3, 1]],    #29
[ -1, Upsample, [None, 2, 'nearest']],  #30
[ -1, Conv, [32, 16, 3, 1]],    #31
[ -1, BottleneckCSP, [16, 8, 1, False]],    #32 driving area segment neck
[ -1, Upsample, [None, 2, 'nearest']],  #33
[ -1, Conv, [8, 3, 3, 1]], #34 Driving area segmentation output
[ 16, Conv, [256, 64, 3, 1]],   #35
[ -1, Upsample, [None, 2, 'nearest']],  #36
[ [-1,2], Concat, [1]], #37
[ -1, BottleneckCSP, [128, 64, 1, False]],  #38
[ -1, Conv, [64, 32, 3, 1]],    #39
[ -1, Upsample, [None, 2, 'nearest']],  #40
[ -1, Conv, [32, 16, 3, 1]],    #41
[ -1, BottleneckCSP, [16, 8, 1, False]],    #42 lane line segment neck
[ -1, Upsample, [None, 2, 'nearest']],  #43
[ -1, Conv, [8, 2, 3, 1]] #44 Lane line segmentation output
]
MCnet_feedback = [
[ -1, Focus, [3, 32, 3]],   #0
[ -1, Conv, [32, 64, 3, 2]],    #1
[ -1, BottleneckCSP, [64, 64, 1]],  #2
[ -1, Conv, [64, 128, 3, 2]],   #3
[ -1, BottleneckCSP, [128, 128, 3]],    #4
[ -1, Conv, [128, 256, 3, 2]],  #5
[ -1, BottleneckCSP, [256, 256, 3]],    #6
[ -1, Conv, [256, 512, 3, 2]],  #7
[ -1, SPP, [512, 512, [5, 9, 13]]],     #8
[ -1, BottleneckCSP, [512, 512, 1, False]],     #9
[ -1, Conv,[512, 256, 1, 1]],   #10
[ -1, Upsample, [None, 2, 'nearest']],  #11
[ [-1, 6], Concat, [1]],    #12
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
[ -1, Conv, [256, 128, 1, 1]],  #14
[ -1, Upsample, [None, 2, 'nearest']],  #15
[ [-1,4], Concat, [1]],     #16
[ -1, BottleneckCSP, [256, 128, 1, False]],     #17
[ -1, Conv, [128, 128, 3, 2]],      #18
[ [-1, 14], Concat, [1]],       #19
[ -1, BottleneckCSP, [256, 256, 1, False]],     #20
[ -1, Conv, [256, 256, 3, 2]],      #21
[ [-1, 10], Concat, [1]],   #22
[ -1, BottleneckCSP, [512, 512, 1, False]],     #23
[ [17, 20, 23], Detect,  [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24
[ 16, Conv, [256, 128, 3, 1]],   #25
[ -1, Upsample, [None, 2, 'nearest']],  #26
[ -1, BottleneckCSP, [128, 64, 1, False]],  #28
[ -1, Conv, [64, 32, 3, 1]],    #29
[ -1, Upsample, [None, 2, 'nearest']],  #30
[ -1, Conv, [32, 16, 3, 1]],    #31
[ -1, BottleneckCSP, [16, 8, 1, False]],    #32 driving area segment neck
[ -1, Upsample, [None, 2, 'nearest']],  #33
[ -1, Conv, [8, 2, 3, 1]], #34 Driving area segmentation output
[ 16, Conv, [256, 128, 3, 1]],   #35
[ -1, Upsample, [None, 2, 'nearest']],  #36
[ -1, BottleneckCSP, [128, 64, 1, False]],  #38
[ -1, Conv, [64, 32, 3, 1]],    #39
[ -1, Upsample, [None, 2, 'nearest']],  #40
[ -1, Conv, [32, 16, 3, 1]],    #41
[ -1, BottleneckCSP, [16, 8, 1, False]],    #42 lane line segment neck
[ -1, Upsample, [None, 2, 'nearest']],  #43
[ -1, Conv, [8, 2, 3, 1]] #44 Lane line segmentation output
]
MCnet_Da_feedback1 = [
[46, 26, 35],   #Det_out_idx, Da_Segout_idx, LL_Segout_idx
[ -1, Focus, [3, 32, 3]],   #0
[ -1, Conv, [32, 64, 3, 2]],    #1
[ -1, BottleneckCSP, [64, 64, 1]],  #2
[ -1, Conv, [64, 128, 3, 2]],   #3
[ -1, BottleneckCSP, [128, 128, 3]],    #4
[ -1, Conv, [128, 256, 3, 2]],  #5
[ -1, BottleneckCSP, [256, 256, 3]],    #6
[ -1, Conv, [256, 512, 3, 2]],  #7
[ -1, SPP, [512, 512, [5, 9, 13]]],     #8
[ -1, BottleneckCSP, [512, 512, 1, False]],     #9
[ -1, Conv,[512, 256, 1, 1]],   #10
[ -1, Upsample, [None, 2, 'nearest']],  #11
[ [-1, 6], Concat, [1]],    #12
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
[ -1, Conv, [256, 128, 1, 1]],  #14
[ -1, Upsample, [None, 2, 'nearest']],  #15
[ [-1,4], Concat, [1]],     #16     backbone+fpn
[ -1,Conv,[256,256,1,1]],   #17
[ 16, Conv, [256, 128, 3, 1]],   #18
[ -1, Upsample, [None, 2, 'nearest']],  #19
[ -1, BottleneckCSP, [128, 64, 1, False]],  #20
[ -1, Conv, [64, 32, 3, 1]],    #21
[ -1, Upsample, [None, 2, 'nearest']],  #22
[ -1, Conv, [32, 16, 3, 1]],    #23
[ -1, BottleneckCSP, [16, 8, 1, False]],    #24 driving area segment neck
[ -1, Upsample, [None, 2, 'nearest']],  #25
[ -1, Conv, [8, 2, 3, 1]], #26 Driving area segmentation output
[ 16, Conv, [256, 128, 3, 1]],   #27
[ -1, Upsample, [None, 2, 'nearest']],  #28
[ -1, BottleneckCSP, [128, 64, 1, False]],  #29
[ -1, Conv, [64, 32, 3, 1]],    #30
[ -1, Upsample, [None, 2, 'nearest']],  #31
[ -1, Conv, [32, 16, 3, 1]],    #32
[ -1, BottleneckCSP, [16, 8, 1, False]],    #33 lane line segment neck
[ -1, Upsample, [None, 2, 'nearest']],  #34
[ -1, Conv, [8, 2, 3, 1]], #35Lane line segmentation output
[ 23, Conv, [16, 16, 3, 2]],     #36
[ -1, Conv, [16, 32, 3, 2]],    #2 times 2xdownsample    37
[ [-1,17], Concat, [1]],       #38
[ -1, BottleneckCSP, [288, 128, 1, False]],    #39
[ -1, Conv, [128, 128, 3, 2]],      #40
[ [-1, 14], Concat, [1]],       #41
[ -1, BottleneckCSP, [256, 256, 1, False]],     #42
[ -1, Conv, [256, 256, 3, 2]],      #43
[ [-1, 10], Concat, [1]],   #44
[ -1, BottleneckCSP, [512, 512, 1, False]],     #45
[ [39, 42, 45], Detect,  [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]] #Detect output 46
]
# The lane line and the driving area segment branches share information with each other and feedback to det_head
MCnet_Da_feedback2 = [
[47, 26, 35],   #Det_out_idx, Da_Segout_idx, LL_Segout_idx
[25, 28, 31, 33],   #layer in Da_branch to do SAD
[34, 37, 40, 42],   #layer in LL_branch to do SAD
[ -1, Focus, [3, 32, 3]],   #0
[ -1, Conv, [32, 64, 3, 2]],    #1
[ -1, BottleneckCSP, [64, 64, 1]],  #2
[ -1, Conv, [64, 128, 3, 2]],   #3
[ -1, BottleneckCSP, [128, 128, 3]],    #4
[ -1, Conv, [128, 256, 3, 2]],  #5
[ -1, BottleneckCSP, [256, 256, 3]],    #6
[ -1, Conv, [256, 512, 3, 2]],  #7
[ -1, SPP, [512, 512, [5, 9, 13]]],     #8
[ -1, BottleneckCSP, [512, 512, 1, False]],     #9
[ -1, Conv,[512, 256, 1, 1]],   #10
[ -1, Upsample, [None, 2, 'nearest']],  #11
[ [-1, 6], Concat, [1]],    #12
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
[ -1, Conv, [256, 128, 1, 1]],  #14
[ -1, Upsample, [None, 2, 'nearest']],  #15
[ [-1,4], Concat, [1]],     #16     backbone+fpn
[ -1,Conv,[256,256,1,1]],   #17
[ 16, Conv, [256, 128, 3, 1]],   #18
[ -1, Upsample, [None, 2, 'nearest']],  #19
[ -1, BottleneckCSP, [128, 64, 1, False]],  #20
[ -1, Conv, [64, 32, 3, 1]],    #21
[ -1, Upsample, [None, 2, 'nearest']],  #22
[ -1, Conv, [32, 16, 3, 1]],    #23
[ -1, BottleneckCSP, [16, 8, 1, False]],    #24 driving area segment neck
[ -1, Upsample, [None, 2, 'nearest']],  #25
[ -1, Conv, [8, 2, 3, 1]], #26 Driving area segmentation output
[ 16, Conv, [256, 128, 3, 1]],   #27
[ -1, Upsample, [None, 2, 'nearest']],  #28
[ -1, BottleneckCSP, [128, 64, 1, False]],  #29
[ -1, Conv, [64, 32, 3, 1]],    #30
[ -1, Upsample, [None, 2, 'nearest']],  #31
[ -1, Conv, [32, 16, 3, 1]],    #32
[ -1, BottleneckCSP, [16, 8, 1, False]],    #33 lane line segment neck
[ -1, Upsample, [None, 2, 'nearest']],  #34
[ -1, Conv, [8, 2, 3, 1]], #35Lane line segmentation output
[ 23, Conv, [16, 64, 3, 2]],     #36
[ -1, Conv, [64, 256, 3, 2]],    #2 times 2xdownsample    37
[ [-1,17], Concat, [1]],       #38
[-1, Conv, [512, 256, 3, 1]],     #39
[ -1, BottleneckCSP, [256, 128, 1, False]],    #40
[ -1, Conv, [128, 128, 3, 2]],      #41
[ [-1, 14], Concat, [1]],       #42
[ -1, BottleneckCSP, [256, 256, 1, False]],     #43
[ -1, Conv, [256, 256, 3, 2]],      #44
[ [-1, 10], Concat, [1]],   #45
[ -1, BottleneckCSP, [512, 512, 1, False]],     #46
[ [40, 42, 45], Detect,  [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]] #Detect output 47
]
MCnet_share1 = [
[24, 33, 45],   #Det_out_idx, Da_Segout_idx, LL_Segout_idx
[25, 28, 31, 33],   #layer in Da_branch to do SAD
[34, 37, 40, 42],   #layer in LL_branch to do SAD
[ -1, Focus, [3, 32, 3]],   #0
[ -1, Conv, [32, 64, 3, 2]],    #1
[ -1, BottleneckCSP, [64, 64, 1]],  #2
[ -1, Conv, [64, 128, 3, 2]],   #3
[ -1, BottleneckCSP, [128, 128, 3]],    #4
[ -1, Conv, [128, 256, 3, 2]],  #5
[ -1, BottleneckCSP, [256, 256, 3]],    #6
[ -1, Conv, [256, 512, 3, 2]],  #7
[ -1, SPP, [512, 512, [5, 9, 13]]],     #8
[ -1, BottleneckCSP, [512, 512, 1, False]],     #9
[ -1, Conv,[512, 256, 1, 1]],   #10
[ -1, Upsample, [None, 2, 'nearest']],  #11
[ [-1, 6], Concat, [1]],    #12
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
[ -1, Conv, [256, 128, 1, 1]],  #14
[ -1, Upsample, [None, 2, 'nearest']],  #15
[ [-1,4], Concat, [1]],     #16
[ -1, BottleneckCSP, [256, 128, 1, False]],     #17
[ -1, Conv, [128, 128, 3, 2]],      #18
[ [-1, 14], Concat, [1]],       #19
[ -1, BottleneckCSP, [256, 256, 1, False]],     #20
[ -1, Conv, [256, 256, 3, 2]],      #21
[ [-1, 10], Concat, [1]],   #22
[ -1, BottleneckCSP, [512, 512, 1, False]],     #23
[ [17, 20, 23], Detect,  [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24
[ 16, Conv, [256, 128, 3, 1]],   #25
[ -1, Upsample, [None, 2, 'nearest']],  #26
[ -1, BottleneckCSP, [128, 64, 1, False]],  #27
[ -1, Conv, [64, 32, 3, 1]],    #28
[ -1, Upsample, [None, 2, 'nearest']],  #29
[ -1, Conv, [32, 16, 3, 1]],    #30
[ -1, BottleneckCSP, [16, 8, 1, False]],    #31 driving area segment neck
[ -1, Upsample, [None, 2, 'nearest']],  #32
[ -1, Conv, [8, 2, 3, 1]], #33 Driving area segmentation output
[ 16, Conv, [256, 128, 3, 1]],   #34
[ -1, Upsample, [None, 2, 'nearest']],  #35
[ -1, BottleneckCSP, [128, 64, 1, False]],  #36
[ -1, Conv, [64, 32, 3, 1]],    #37
[ -1, Upsample, [None, 2, 'nearest']],  #38
[ -1, Conv, [32, 16, 3, 1]],    #39
[ 30, SharpenConv, [16,16, 3, 1]], #40
[ -1, Conv, [16, 16, 3, 1]], #41
[ [-1, 39], Concat, [1]],   #42
[ -1, BottleneckCSP, [32, 8, 1, False]],    #43 lane line segment neck
[ -1, Upsample, [None, 2, 'nearest']],  #44
[ -1, Conv, [8, 2, 3, 1]] #45 Lane line segmentation output
]"""


# The lane line and the driving area segment branches without share information with each other and without link
YOLOP = [
[24, 33, 42],   #Det_out_idx, Da_Segout_idx, LL_Segout_idx
[ -1, Focus, [3, 32, 3]],   #0
[ -1, Conv, [32, 64, 3, 2]],    #1
[ -1, BottleneckCSP, [64, 64, 1]],  #2
[ -1, Conv, [64, 128, 3, 2]],   #3
[ -1, BottleneckCSP, [128, 128, 3]],    #4
[ -1, Conv, [128, 256, 3, 2]],  #5
[ -1, BottleneckCSP, [256, 256, 3]],    #6
[ -1, Conv, [256, 512, 3, 2]],  #7
[ -1, SPP, [512, 512, [5, 9, 13]]],     #8
[ -1, BottleneckCSP, [512, 512, 1, False]],     #9
[ -1, Conv,[512, 256, 1, 1]],   #10
[ -1, Upsample, [None, 2, 'nearest']],  #11
[ [-1, 6], Concat, [1]],    #12
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
[ -1, Conv, [256, 128, 1, 1]],  #14
[ -1, Upsample, [None, 2, 'nearest']],  #15
[ [-1,4], Concat, [1]],     #16         #Encoder

[ -1, BottleneckCSP, [256, 128, 1, False]],     #17
[ -1, Conv, [128, 128, 3, 2]],      #18
[ [-1, 14], Concat, [1]],       #19
[ -1, BottleneckCSP, [256, 256, 1, False]],     #20
[ -1, Conv, [256, 256, 3, 2]],      #21
[ [-1, 10], Concat, [1]],   #22
[ -1, BottleneckCSP, [512, 512, 1, False]],     #23
[ [17, 20, 23], Detect,  [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detection head 24

[ 16, Conv, [256, 128, 3, 1]],   #25
[ -1, Upsample, [None, 2, 'nearest']],  #26
[ -1, BottleneckCSP, [128, 64, 1, False]],  #27
[ -1, Conv, [64, 32, 3, 1]],    #28
[ -1, Upsample, [None, 2, 'nearest']],  #29
[ -1, Conv, [32, 16, 3, 1]],    #30
[ -1, BottleneckCSP, [16, 8, 1, False]],    #31
[ -1, Upsample, [None, 2, 'nearest']],  #32
[ -1, Conv, [8, 2, 3, 1]], #33 Driving area segmentation head

[ 16, Conv, [256, 128, 3, 1]],   #34
[ -1, Upsample, [None, 2, 'nearest']],  #35
[ -1, BottleneckCSP, [128, 64, 1, False]],  #36
[ -1, Conv, [64, 32, 3, 1]],    #37
[ -1, Upsample, [None, 2, 'nearest']],  #38
[ -1, Conv, [32, 16, 3, 1]],    #39
[ -1, BottleneckCSP, [16, 8, 1, False]],    #40
[ -1, Upsample, [None, 2, 'nearest']],  #41
[ -1, Conv, [8, 2, 3, 1]] #42 Lane line segmentation head
]


class MCnet(nn.Module):
    def __init__(self, block_cfg, **kwargs):
        super(MCnet, self).__init__()
        layers, save= [], []
        self.nc = 1
        self.detector_index = -1
        self.det_out_idx = block_cfg[0][0]
        self.seg_out_idx = block_cfg[0][1:]
        

        # Build model
        for i, (from_, block, args) in enumerate(block_cfg[1:]):
            block = eval(block) if isinstance(block, str) else block  # eval strings
            if block is Detect:
                self.detector_index = i
            block_ = block(*args)
            block_.index, block_.from_ = i, from_
            layers.append(block_)
            save.extend(x % i for x in ([from_] if isinstance(from_, int) else from_) if x != -1)  # append to savelist
        assert self.detector_index == block_cfg[0][0]

        self.model, self.save = nn.Sequential(*layers), sorted(save)
        self.names = [str(i) for i in range(self.nc)]

        # set stride、anchor for detector
        Detector = self.model[self.detector_index]  # detector
        if isinstance(Detector, Detect):
            s = 128  # 2x min stride
            # for x in self.forward(torch.zeros(1, 3, s, s)):
            #     print (x.shape)
            with torch.no_grad():
                model_out = self.forward(torch.zeros(1, 3, s, s))
                detects, _, _= model_out
                Detector.stride = torch.tensor([s / x.shape[-2] for x in detects])  # forward
            # print("stride"+str(Detector.stride ))
            Detector.anchors /= Detector.stride.view(-1, 1, 1)  # Set the anchors for the corresponding scale
            check_anchor_order(Detector)
            self.stride = Detector.stride
            self._initialize_biases()
        
        #initialize_weights(self)

    def forward(self, x):
        cache = []
        out = []
        det_out = None
        Da_fmap = []
        LL_fmap = []
        for i, block in enumerate(self.model):
            if block.from_ != -1:
                x = cache[block.from_] if isinstance(block.from_, int) else [x if j == -1 else cache[j] for j in block.from_]       #calculate concat detect
            x = block(x)
            if i in self.seg_out_idx:     #save driving area segment result
                m=nn.Sigmoid()
                out.append(m(x))
            if i == self.detector_index:
                det_out = x
            cache.append(x if block.index in self.save else None)
        out.insert(0,det_out)
        return out
            
    
    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # https://arxiv.org/abs/1708.02002 section 3.3
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        # m = self.model[-1]  # Detect() module
        m = self.model[self.detector_index]  # Detect() module
        for mi, s in zip(m.m, m.stride):  # from
            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
            b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

def get_net(cfg, **kwargs): 
    m_block_cfg = YOLOP
    model = MCnet(m_block_cfg, **kwargs)
    return model