Spaces:
Sleeping
Sleeping
Create new file
Browse files- lib/models/YOLOP.py +552 -0
lib/models/YOLOP.py
ADDED
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import tensor
|
3 |
+
import torch.nn as nn
|
4 |
+
import sys,os
|
5 |
+
import math
|
6 |
+
import sys
|
7 |
+
sys.path.append(os.getcwd())
|
8 |
+
#sys.path.append("lib/models")
|
9 |
+
#sys.path.append("lib/utils")
|
10 |
+
#sys.path.append("/workspace/wh/projects/DaChuang")
|
11 |
+
from lib.utils import initialize_weights
|
12 |
+
# from lib.models.common2 import DepthSeperabelConv2d as Conv
|
13 |
+
# from lib.models.common2 import SPP, Bottleneck, BottleneckCSP, Focus, Concat, Detect
|
14 |
+
from lib.models.common import Conv, SPP, Bottleneck, BottleneckCSP, Focus, Concat, Detect, SharpenConv
|
15 |
+
from torch.nn import Upsample
|
16 |
+
from lib.utils import check_anchor_order
|
17 |
+
from lib.core.evaluate import SegmentationMetric
|
18 |
+
from lib.utils.utils import time_synchronized
|
19 |
+
|
20 |
+
"""
|
21 |
+
MCnet_SPP = [
|
22 |
+
[ -1, Focus, [3, 32, 3]],
|
23 |
+
[ -1, Conv, [32, 64, 3, 2]],
|
24 |
+
[ -1, BottleneckCSP, [64, 64, 1]],
|
25 |
+
[ -1, Conv, [64, 128, 3, 2]],
|
26 |
+
[ -1, BottleneckCSP, [128, 128, 3]],
|
27 |
+
[ -1, Conv, [128, 256, 3, 2]],
|
28 |
+
[ -1, BottleneckCSP, [256, 256, 3]],
|
29 |
+
[ -1, Conv, [256, 512, 3, 2]],
|
30 |
+
[ -1, SPP, [512, 512, [5, 9, 13]]],
|
31 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]],
|
32 |
+
[ -1, Conv,[512, 256, 1, 1]],
|
33 |
+
[ -1, Upsample, [None, 2, 'nearest']],
|
34 |
+
[ [-1, 6], Concat, [1]],
|
35 |
+
[ -1, BottleneckCSP, [512, 256, 1, False]],
|
36 |
+
[ -1, Conv, [256, 128, 1, 1]],
|
37 |
+
[ -1, Upsample, [None, 2, 'nearest']],
|
38 |
+
[ [-1,4], Concat, [1]],
|
39 |
+
[ -1, BottleneckCSP, [256, 128, 1, False]],
|
40 |
+
[ -1, Conv, [128, 128, 3, 2]],
|
41 |
+
[ [-1, 14], Concat, [1]],
|
42 |
+
[ -1, BottleneckCSP, [256, 256, 1, False]],
|
43 |
+
[ -1, Conv, [256, 256, 3, 2]],
|
44 |
+
[ [-1, 10], Concat, [1]],
|
45 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]],
|
46 |
+
# [ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]],
|
47 |
+
[ [17, 20, 23], Detect, [13, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]],
|
48 |
+
[ 17, Conv, [128, 64, 3, 1]],
|
49 |
+
[ -1, Upsample, [None, 2, 'nearest']],
|
50 |
+
[ [-1,2], Concat, [1]],
|
51 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]],
|
52 |
+
[ -1, Conv, [64, 32, 3, 1]],
|
53 |
+
[ -1, Upsample, [None, 2, 'nearest']],
|
54 |
+
[ -1, Conv, [32, 16, 3, 1]],
|
55 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]],
|
56 |
+
[ -1, Upsample, [None, 2, 'nearest']],
|
57 |
+
[ -1, SPP, [8, 2, [5, 9, 13]]] #segmentation output
|
58 |
+
]
|
59 |
+
# [2,6,3,9,5,13], [7,19,11,26,17,39], [28,64,44,103,61,183]
|
60 |
+
MCnet_0 = [
|
61 |
+
[ -1, Focus, [3, 32, 3]],
|
62 |
+
[ -1, Conv, [32, 64, 3, 2]],
|
63 |
+
[ -1, BottleneckCSP, [64, 64, 1]],
|
64 |
+
[ -1, Conv, [64, 128, 3, 2]],
|
65 |
+
[ -1, BottleneckCSP, [128, 128, 3]],
|
66 |
+
[ -1, Conv, [128, 256, 3, 2]],
|
67 |
+
[ -1, BottleneckCSP, [256, 256, 3]],
|
68 |
+
[ -1, Conv, [256, 512, 3, 2]],
|
69 |
+
[ -1, SPP, [512, 512, [5, 9, 13]]],
|
70 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]],
|
71 |
+
[ -1, Conv,[512, 256, 1, 1]],
|
72 |
+
[ -1, Upsample, [None, 2, 'nearest']],
|
73 |
+
[ [-1, 6], Concat, [1]],
|
74 |
+
[ -1, BottleneckCSP, [512, 256, 1, False]],
|
75 |
+
[ -1, Conv, [256, 128, 1, 1]],
|
76 |
+
[ -1, Upsample, [None, 2, 'nearest']],
|
77 |
+
[ [-1,4], Concat, [1]],
|
78 |
+
[ -1, BottleneckCSP, [256, 128, 1, False]],
|
79 |
+
[ -1, Conv, [128, 128, 3, 2]],
|
80 |
+
[ [-1, 14], Concat, [1]],
|
81 |
+
[ -1, BottleneckCSP, [256, 256, 1, False]],
|
82 |
+
[ -1, Conv, [256, 256, 3, 2]],
|
83 |
+
[ [-1, 10], Concat, [1]],
|
84 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]],
|
85 |
+
[ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24
|
86 |
+
[ 16, Conv, [128, 64, 3, 1]],
|
87 |
+
[ -1, Upsample, [None, 2, 'nearest']],
|
88 |
+
[ [-1,2], Concat, [1]],
|
89 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]],
|
90 |
+
[ -1, Conv, [64, 32, 3, 1]],
|
91 |
+
[ -1, Upsample, [None, 2, 'nearest']],
|
92 |
+
[ -1, Conv, [32, 16, 3, 1]],
|
93 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]],
|
94 |
+
[ -1, Upsample, [None, 2, 'nearest']],
|
95 |
+
[ -1, Conv, [8, 2, 3, 1]], #Driving area segmentation output
|
96 |
+
[ 16, Conv, [128, 64, 3, 1]],
|
97 |
+
[ -1, Upsample, [None, 2, 'nearest']],
|
98 |
+
[ [-1,2], Concat, [1]],
|
99 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]],
|
100 |
+
[ -1, Conv, [64, 32, 3, 1]],
|
101 |
+
[ -1, Upsample, [None, 2, 'nearest']],
|
102 |
+
[ -1, Conv, [32, 16, 3, 1]],
|
103 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]],
|
104 |
+
[ -1, Upsample, [None, 2, 'nearest']],
|
105 |
+
[ -1, Conv, [8, 2, 3, 1]], #Lane line segmentation output
|
106 |
+
]
|
107 |
+
# The lane line and the driving area segment branches share information with each other
|
108 |
+
MCnet_share = [
|
109 |
+
[ -1, Focus, [3, 32, 3]], #0
|
110 |
+
[ -1, Conv, [32, 64, 3, 2]], #1
|
111 |
+
[ -1, BottleneckCSP, [64, 64, 1]], #2
|
112 |
+
[ -1, Conv, [64, 128, 3, 2]], #3
|
113 |
+
[ -1, BottleneckCSP, [128, 128, 3]], #4
|
114 |
+
[ -1, Conv, [128, 256, 3, 2]], #5
|
115 |
+
[ -1, BottleneckCSP, [256, 256, 3]], #6
|
116 |
+
[ -1, Conv, [256, 512, 3, 2]], #7
|
117 |
+
[ -1, SPP, [512, 512, [5, 9, 13]]], #8
|
118 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #9
|
119 |
+
[ -1, Conv,[512, 256, 1, 1]], #10
|
120 |
+
[ -1, Upsample, [None, 2, 'nearest']], #11
|
121 |
+
[ [-1, 6], Concat, [1]], #12
|
122 |
+
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
|
123 |
+
[ -1, Conv, [256, 128, 1, 1]], #14
|
124 |
+
[ -1, Upsample, [None, 2, 'nearest']], #15
|
125 |
+
[ [-1,4], Concat, [1]], #16
|
126 |
+
[ -1, BottleneckCSP, [256, 128, 1, False]], #17
|
127 |
+
[ -1, Conv, [128, 128, 3, 2]], #18
|
128 |
+
[ [-1, 14], Concat, [1]], #19
|
129 |
+
[ -1, BottleneckCSP, [256, 256, 1, False]], #20
|
130 |
+
[ -1, Conv, [256, 256, 3, 2]], #21
|
131 |
+
[ [-1, 10], Concat, [1]], #22
|
132 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #23
|
133 |
+
[ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24
|
134 |
+
[ 16, Conv, [256, 64, 3, 1]], #25
|
135 |
+
[ -1, Upsample, [None, 2, 'nearest']], #26
|
136 |
+
[ [-1,2], Concat, [1]], #27
|
137 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #28
|
138 |
+
[ -1, Conv, [64, 32, 3, 1]], #29
|
139 |
+
[ -1, Upsample, [None, 2, 'nearest']], #30
|
140 |
+
[ -1, Conv, [32, 16, 3, 1]], #31
|
141 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]], #32 driving area segment neck
|
142 |
+
[ 16, Conv, [256, 64, 3, 1]], #33
|
143 |
+
[ -1, Upsample, [None, 2, 'nearest']], #34
|
144 |
+
[ [-1,2], Concat, [1]], #35
|
145 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #36
|
146 |
+
[ -1, Conv, [64, 32, 3, 1]], #37
|
147 |
+
[ -1, Upsample, [None, 2, 'nearest']], #38
|
148 |
+
[ -1, Conv, [32, 16, 3, 1]], #39
|
149 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]], #40 lane line segment neck
|
150 |
+
[ [31,39], Concat, [1]], #41
|
151 |
+
[ -1, Conv, [32, 8, 3, 1]], #42 Share_Block
|
152 |
+
[ [32,42], Concat, [1]], #43
|
153 |
+
[ -1, Upsample, [None, 2, 'nearest']], #44
|
154 |
+
[ -1, Conv, [16, 2, 3, 1]], #45 Driving area segmentation output
|
155 |
+
[ [40,42], Concat, [1]], #46
|
156 |
+
[ -1, Upsample, [None, 2, 'nearest']], #47
|
157 |
+
[ -1, Conv, [16, 2, 3, 1]] #48Lane line segmentation output
|
158 |
+
]
|
159 |
+
# The lane line and the driving area segment branches without share information with each other
|
160 |
+
MCnet_no_share = [
|
161 |
+
[ -1, Focus, [3, 32, 3]], #0
|
162 |
+
[ -1, Conv, [32, 64, 3, 2]], #1
|
163 |
+
[ -1, BottleneckCSP, [64, 64, 1]], #2
|
164 |
+
[ -1, Conv, [64, 128, 3, 2]], #3
|
165 |
+
[ -1, BottleneckCSP, [128, 128, 3]], #4
|
166 |
+
[ -1, Conv, [128, 256, 3, 2]], #5
|
167 |
+
[ -1, BottleneckCSP, [256, 256, 3]], #6
|
168 |
+
[ -1, Conv, [256, 512, 3, 2]], #7
|
169 |
+
[ -1, SPP, [512, 512, [5, 9, 13]]], #8
|
170 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #9
|
171 |
+
[ -1, Conv,[512, 256, 1, 1]], #10
|
172 |
+
[ -1, Upsample, [None, 2, 'nearest']], #11
|
173 |
+
[ [-1, 6], Concat, [1]], #12
|
174 |
+
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
|
175 |
+
[ -1, Conv, [256, 128, 1, 1]], #14
|
176 |
+
[ -1, Upsample, [None, 2, 'nearest']], #15
|
177 |
+
[ [-1,4], Concat, [1]], #16
|
178 |
+
[ -1, BottleneckCSP, [256, 128, 1, False]], #17
|
179 |
+
[ -1, Conv, [128, 128, 3, 2]], #18
|
180 |
+
[ [-1, 14], Concat, [1]], #19
|
181 |
+
[ -1, BottleneckCSP, [256, 256, 1, False]], #20
|
182 |
+
[ -1, Conv, [256, 256, 3, 2]], #21
|
183 |
+
[ [-1, 10], Concat, [1]], #22
|
184 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #23
|
185 |
+
[ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24
|
186 |
+
[ 16, Conv, [256, 64, 3, 1]], #25
|
187 |
+
[ -1, Upsample, [None, 2, 'nearest']], #26
|
188 |
+
[ [-1,2], Concat, [1]], #27
|
189 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #28
|
190 |
+
[ -1, Conv, [64, 32, 3, 1]], #29
|
191 |
+
[ -1, Upsample, [None, 2, 'nearest']], #30
|
192 |
+
[ -1, Conv, [32, 16, 3, 1]], #31
|
193 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]], #32 driving area segment neck
|
194 |
+
[ -1, Upsample, [None, 2, 'nearest']], #33
|
195 |
+
[ -1, Conv, [8, 3, 3, 1]], #34 Driving area segmentation output
|
196 |
+
[ 16, Conv, [256, 64, 3, 1]], #35
|
197 |
+
[ -1, Upsample, [None, 2, 'nearest']], #36
|
198 |
+
[ [-1,2], Concat, [1]], #37
|
199 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #38
|
200 |
+
[ -1, Conv, [64, 32, 3, 1]], #39
|
201 |
+
[ -1, Upsample, [None, 2, 'nearest']], #40
|
202 |
+
[ -1, Conv, [32, 16, 3, 1]], #41
|
203 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]], #42 lane line segment neck
|
204 |
+
[ -1, Upsample, [None, 2, 'nearest']], #43
|
205 |
+
[ -1, Conv, [8, 2, 3, 1]] #44 Lane line segmentation output
|
206 |
+
]
|
207 |
+
MCnet_feedback = [
|
208 |
+
[ -1, Focus, [3, 32, 3]], #0
|
209 |
+
[ -1, Conv, [32, 64, 3, 2]], #1
|
210 |
+
[ -1, BottleneckCSP, [64, 64, 1]], #2
|
211 |
+
[ -1, Conv, [64, 128, 3, 2]], #3
|
212 |
+
[ -1, BottleneckCSP, [128, 128, 3]], #4
|
213 |
+
[ -1, Conv, [128, 256, 3, 2]], #5
|
214 |
+
[ -1, BottleneckCSP, [256, 256, 3]], #6
|
215 |
+
[ -1, Conv, [256, 512, 3, 2]], #7
|
216 |
+
[ -1, SPP, [512, 512, [5, 9, 13]]], #8
|
217 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #9
|
218 |
+
[ -1, Conv,[512, 256, 1, 1]], #10
|
219 |
+
[ -1, Upsample, [None, 2, 'nearest']], #11
|
220 |
+
[ [-1, 6], Concat, [1]], #12
|
221 |
+
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
|
222 |
+
[ -1, Conv, [256, 128, 1, 1]], #14
|
223 |
+
[ -1, Upsample, [None, 2, 'nearest']], #15
|
224 |
+
[ [-1,4], Concat, [1]], #16
|
225 |
+
[ -1, BottleneckCSP, [256, 128, 1, False]], #17
|
226 |
+
[ -1, Conv, [128, 128, 3, 2]], #18
|
227 |
+
[ [-1, 14], Concat, [1]], #19
|
228 |
+
[ -1, BottleneckCSP, [256, 256, 1, False]], #20
|
229 |
+
[ -1, Conv, [256, 256, 3, 2]], #21
|
230 |
+
[ [-1, 10], Concat, [1]], #22
|
231 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #23
|
232 |
+
[ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24
|
233 |
+
[ 16, Conv, [256, 128, 3, 1]], #25
|
234 |
+
[ -1, Upsample, [None, 2, 'nearest']], #26
|
235 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #28
|
236 |
+
[ -1, Conv, [64, 32, 3, 1]], #29
|
237 |
+
[ -1, Upsample, [None, 2, 'nearest']], #30
|
238 |
+
[ -1, Conv, [32, 16, 3, 1]], #31
|
239 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]], #32 driving area segment neck
|
240 |
+
[ -1, Upsample, [None, 2, 'nearest']], #33
|
241 |
+
[ -1, Conv, [8, 2, 3, 1]], #34 Driving area segmentation output
|
242 |
+
[ 16, Conv, [256, 128, 3, 1]], #35
|
243 |
+
[ -1, Upsample, [None, 2, 'nearest']], #36
|
244 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #38
|
245 |
+
[ -1, Conv, [64, 32, 3, 1]], #39
|
246 |
+
[ -1, Upsample, [None, 2, 'nearest']], #40
|
247 |
+
[ -1, Conv, [32, 16, 3, 1]], #41
|
248 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]], #42 lane line segment neck
|
249 |
+
[ -1, Upsample, [None, 2, 'nearest']], #43
|
250 |
+
[ -1, Conv, [8, 2, 3, 1]] #44 Lane line segmentation output
|
251 |
+
]
|
252 |
+
MCnet_Da_feedback1 = [
|
253 |
+
[46, 26, 35], #Det_out_idx, Da_Segout_idx, LL_Segout_idx
|
254 |
+
[ -1, Focus, [3, 32, 3]], #0
|
255 |
+
[ -1, Conv, [32, 64, 3, 2]], #1
|
256 |
+
[ -1, BottleneckCSP, [64, 64, 1]], #2
|
257 |
+
[ -1, Conv, [64, 128, 3, 2]], #3
|
258 |
+
[ -1, BottleneckCSP, [128, 128, 3]], #4
|
259 |
+
[ -1, Conv, [128, 256, 3, 2]], #5
|
260 |
+
[ -1, BottleneckCSP, [256, 256, 3]], #6
|
261 |
+
[ -1, Conv, [256, 512, 3, 2]], #7
|
262 |
+
[ -1, SPP, [512, 512, [5, 9, 13]]], #8
|
263 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #9
|
264 |
+
[ -1, Conv,[512, 256, 1, 1]], #10
|
265 |
+
[ -1, Upsample, [None, 2, 'nearest']], #11
|
266 |
+
[ [-1, 6], Concat, [1]], #12
|
267 |
+
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
|
268 |
+
[ -1, Conv, [256, 128, 1, 1]], #14
|
269 |
+
[ -1, Upsample, [None, 2, 'nearest']], #15
|
270 |
+
[ [-1,4], Concat, [1]], #16 backbone+fpn
|
271 |
+
[ -1,Conv,[256,256,1,1]], #17
|
272 |
+
[ 16, Conv, [256, 128, 3, 1]], #18
|
273 |
+
[ -1, Upsample, [None, 2, 'nearest']], #19
|
274 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #20
|
275 |
+
[ -1, Conv, [64, 32, 3, 1]], #21
|
276 |
+
[ -1, Upsample, [None, 2, 'nearest']], #22
|
277 |
+
[ -1, Conv, [32, 16, 3, 1]], #23
|
278 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]], #24 driving area segment neck
|
279 |
+
[ -1, Upsample, [None, 2, 'nearest']], #25
|
280 |
+
[ -1, Conv, [8, 2, 3, 1]], #26 Driving area segmentation output
|
281 |
+
[ 16, Conv, [256, 128, 3, 1]], #27
|
282 |
+
[ -1, Upsample, [None, 2, 'nearest']], #28
|
283 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #29
|
284 |
+
[ -1, Conv, [64, 32, 3, 1]], #30
|
285 |
+
[ -1, Upsample, [None, 2, 'nearest']], #31
|
286 |
+
[ -1, Conv, [32, 16, 3, 1]], #32
|
287 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]], #33 lane line segment neck
|
288 |
+
[ -1, Upsample, [None, 2, 'nearest']], #34
|
289 |
+
[ -1, Conv, [8, 2, 3, 1]], #35Lane line segmentation output
|
290 |
+
[ 23, Conv, [16, 16, 3, 2]], #36
|
291 |
+
[ -1, Conv, [16, 32, 3, 2]], #2 times 2xdownsample 37
|
292 |
+
[ [-1,17], Concat, [1]], #38
|
293 |
+
[ -1, BottleneckCSP, [288, 128, 1, False]], #39
|
294 |
+
[ -1, Conv, [128, 128, 3, 2]], #40
|
295 |
+
[ [-1, 14], Concat, [1]], #41
|
296 |
+
[ -1, BottleneckCSP, [256, 256, 1, False]], #42
|
297 |
+
[ -1, Conv, [256, 256, 3, 2]], #43
|
298 |
+
[ [-1, 10], Concat, [1]], #44
|
299 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #45
|
300 |
+
[ [39, 42, 45], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]] #Detect output 46
|
301 |
+
]
|
302 |
+
# The lane line and the driving area segment branches share information with each other and feedback to det_head
|
303 |
+
MCnet_Da_feedback2 = [
|
304 |
+
[47, 26, 35], #Det_out_idx, Da_Segout_idx, LL_Segout_idx
|
305 |
+
[25, 28, 31, 33], #layer in Da_branch to do SAD
|
306 |
+
[34, 37, 40, 42], #layer in LL_branch to do SAD
|
307 |
+
[ -1, Focus, [3, 32, 3]], #0
|
308 |
+
[ -1, Conv, [32, 64, 3, 2]], #1
|
309 |
+
[ -1, BottleneckCSP, [64, 64, 1]], #2
|
310 |
+
[ -1, Conv, [64, 128, 3, 2]], #3
|
311 |
+
[ -1, BottleneckCSP, [128, 128, 3]], #4
|
312 |
+
[ -1, Conv, [128, 256, 3, 2]], #5
|
313 |
+
[ -1, BottleneckCSP, [256, 256, 3]], #6
|
314 |
+
[ -1, Conv, [256, 512, 3, 2]], #7
|
315 |
+
[ -1, SPP, [512, 512, [5, 9, 13]]], #8
|
316 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #9
|
317 |
+
[ -1, Conv,[512, 256, 1, 1]], #10
|
318 |
+
[ -1, Upsample, [None, 2, 'nearest']], #11
|
319 |
+
[ [-1, 6], Concat, [1]], #12
|
320 |
+
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
|
321 |
+
[ -1, Conv, [256, 128, 1, 1]], #14
|
322 |
+
[ -1, Upsample, [None, 2, 'nearest']], #15
|
323 |
+
[ [-1,4], Concat, [1]], #16 backbone+fpn
|
324 |
+
[ -1,Conv,[256,256,1,1]], #17
|
325 |
+
[ 16, Conv, [256, 128, 3, 1]], #18
|
326 |
+
[ -1, Upsample, [None, 2, 'nearest']], #19
|
327 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #20
|
328 |
+
[ -1, Conv, [64, 32, 3, 1]], #21
|
329 |
+
[ -1, Upsample, [None, 2, 'nearest']], #22
|
330 |
+
[ -1, Conv, [32, 16, 3, 1]], #23
|
331 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]], #24 driving area segment neck
|
332 |
+
[ -1, Upsample, [None, 2, 'nearest']], #25
|
333 |
+
[ -1, Conv, [8, 2, 3, 1]], #26 Driving area segmentation output
|
334 |
+
[ 16, Conv, [256, 128, 3, 1]], #27
|
335 |
+
[ -1, Upsample, [None, 2, 'nearest']], #28
|
336 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #29
|
337 |
+
[ -1, Conv, [64, 32, 3, 1]], #30
|
338 |
+
[ -1, Upsample, [None, 2, 'nearest']], #31
|
339 |
+
[ -1, Conv, [32, 16, 3, 1]], #32
|
340 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]], #33 lane line segment neck
|
341 |
+
[ -1, Upsample, [None, 2, 'nearest']], #34
|
342 |
+
[ -1, Conv, [8, 2, 3, 1]], #35Lane line segmentation output
|
343 |
+
[ 23, Conv, [16, 64, 3, 2]], #36
|
344 |
+
[ -1, Conv, [64, 256, 3, 2]], #2 times 2xdownsample 37
|
345 |
+
[ [-1,17], Concat, [1]], #38
|
346 |
+
[-1, Conv, [512, 256, 3, 1]], #39
|
347 |
+
[ -1, BottleneckCSP, [256, 128, 1, False]], #40
|
348 |
+
[ -1, Conv, [128, 128, 3, 2]], #41
|
349 |
+
[ [-1, 14], Concat, [1]], #42
|
350 |
+
[ -1, BottleneckCSP, [256, 256, 1, False]], #43
|
351 |
+
[ -1, Conv, [256, 256, 3, 2]], #44
|
352 |
+
[ [-1, 10], Concat, [1]], #45
|
353 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #46
|
354 |
+
[ [40, 42, 45], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]] #Detect output 47
|
355 |
+
]
|
356 |
+
MCnet_share1 = [
|
357 |
+
[24, 33, 45], #Det_out_idx, Da_Segout_idx, LL_Segout_idx
|
358 |
+
[25, 28, 31, 33], #layer in Da_branch to do SAD
|
359 |
+
[34, 37, 40, 42], #layer in LL_branch to do SAD
|
360 |
+
[ -1, Focus, [3, 32, 3]], #0
|
361 |
+
[ -1, Conv, [32, 64, 3, 2]], #1
|
362 |
+
[ -1, BottleneckCSP, [64, 64, 1]], #2
|
363 |
+
[ -1, Conv, [64, 128, 3, 2]], #3
|
364 |
+
[ -1, BottleneckCSP, [128, 128, 3]], #4
|
365 |
+
[ -1, Conv, [128, 256, 3, 2]], #5
|
366 |
+
[ -1, BottleneckCSP, [256, 256, 3]], #6
|
367 |
+
[ -1, Conv, [256, 512, 3, 2]], #7
|
368 |
+
[ -1, SPP, [512, 512, [5, 9, 13]]], #8
|
369 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #9
|
370 |
+
[ -1, Conv,[512, 256, 1, 1]], #10
|
371 |
+
[ -1, Upsample, [None, 2, 'nearest']], #11
|
372 |
+
[ [-1, 6], Concat, [1]], #12
|
373 |
+
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
|
374 |
+
[ -1, Conv, [256, 128, 1, 1]], #14
|
375 |
+
[ -1, Upsample, [None, 2, 'nearest']], #15
|
376 |
+
[ [-1,4], Concat, [1]], #16
|
377 |
+
[ -1, BottleneckCSP, [256, 128, 1, False]], #17
|
378 |
+
[ -1, Conv, [128, 128, 3, 2]], #18
|
379 |
+
[ [-1, 14], Concat, [1]], #19
|
380 |
+
[ -1, BottleneckCSP, [256, 256, 1, False]], #20
|
381 |
+
[ -1, Conv, [256, 256, 3, 2]], #21
|
382 |
+
[ [-1, 10], Concat, [1]], #22
|
383 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #23
|
384 |
+
[ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detect output 24
|
385 |
+
[ 16, Conv, [256, 128, 3, 1]], #25
|
386 |
+
[ -1, Upsample, [None, 2, 'nearest']], #26
|
387 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #27
|
388 |
+
[ -1, Conv, [64, 32, 3, 1]], #28
|
389 |
+
[ -1, Upsample, [None, 2, 'nearest']], #29
|
390 |
+
[ -1, Conv, [32, 16, 3, 1]], #30
|
391 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]], #31 driving area segment neck
|
392 |
+
[ -1, Upsample, [None, 2, 'nearest']], #32
|
393 |
+
[ -1, Conv, [8, 2, 3, 1]], #33 Driving area segmentation output
|
394 |
+
[ 16, Conv, [256, 128, 3, 1]], #34
|
395 |
+
[ -1, Upsample, [None, 2, 'nearest']], #35
|
396 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #36
|
397 |
+
[ -1, Conv, [64, 32, 3, 1]], #37
|
398 |
+
[ -1, Upsample, [None, 2, 'nearest']], #38
|
399 |
+
[ -1, Conv, [32, 16, 3, 1]], #39
|
400 |
+
[ 30, SharpenConv, [16,16, 3, 1]], #40
|
401 |
+
[ -1, Conv, [16, 16, 3, 1]], #41
|
402 |
+
[ [-1, 39], Concat, [1]], #42
|
403 |
+
[ -1, BottleneckCSP, [32, 8, 1, False]], #43 lane line segment neck
|
404 |
+
[ -1, Upsample, [None, 2, 'nearest']], #44
|
405 |
+
[ -1, Conv, [8, 2, 3, 1]] #45 Lane line segmentation output
|
406 |
+
]"""
|
407 |
+
|
408 |
+
|
409 |
+
# The lane line and the driving area segment branches without share information with each other and without link
|
410 |
+
YOLOP = [
|
411 |
+
[24, 33, 42], #Det_out_idx, Da_Segout_idx, LL_Segout_idx
|
412 |
+
[ -1, Focus, [3, 32, 3]], #0
|
413 |
+
[ -1, Conv, [32, 64, 3, 2]], #1
|
414 |
+
[ -1, BottleneckCSP, [64, 64, 1]], #2
|
415 |
+
[ -1, Conv, [64, 128, 3, 2]], #3
|
416 |
+
[ -1, BottleneckCSP, [128, 128, 3]], #4
|
417 |
+
[ -1, Conv, [128, 256, 3, 2]], #5
|
418 |
+
[ -1, BottleneckCSP, [256, 256, 3]], #6
|
419 |
+
[ -1, Conv, [256, 512, 3, 2]], #7
|
420 |
+
[ -1, SPP, [512, 512, [5, 9, 13]]], #8
|
421 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #9
|
422 |
+
[ -1, Conv,[512, 256, 1, 1]], #10
|
423 |
+
[ -1, Upsample, [None, 2, 'nearest']], #11
|
424 |
+
[ [-1, 6], Concat, [1]], #12
|
425 |
+
[ -1, BottleneckCSP, [512, 256, 1, False]], #13
|
426 |
+
[ -1, Conv, [256, 128, 1, 1]], #14
|
427 |
+
[ -1, Upsample, [None, 2, 'nearest']], #15
|
428 |
+
[ [-1,4], Concat, [1]], #16 #Encoder
|
429 |
+
|
430 |
+
[ -1, BottleneckCSP, [256, 128, 1, False]], #17
|
431 |
+
[ -1, Conv, [128, 128, 3, 2]], #18
|
432 |
+
[ [-1, 14], Concat, [1]], #19
|
433 |
+
[ -1, BottleneckCSP, [256, 256, 1, False]], #20
|
434 |
+
[ -1, Conv, [256, 256, 3, 2]], #21
|
435 |
+
[ [-1, 10], Concat, [1]], #22
|
436 |
+
[ -1, BottleneckCSP, [512, 512, 1, False]], #23
|
437 |
+
[ [17, 20, 23], Detect, [1, [[3,9,5,11,4,20], [7,18,6,39,12,31], [19,50,38,81,68,157]], [128, 256, 512]]], #Detection head 24
|
438 |
+
|
439 |
+
[ 16, Conv, [256, 128, 3, 1]], #25
|
440 |
+
[ -1, Upsample, [None, 2, 'nearest']], #26
|
441 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #27
|
442 |
+
[ -1, Conv, [64, 32, 3, 1]], #28
|
443 |
+
[ -1, Upsample, [None, 2, 'nearest']], #29
|
444 |
+
[ -1, Conv, [32, 16, 3, 1]], #30
|
445 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]], #31
|
446 |
+
[ -1, Upsample, [None, 2, 'nearest']], #32
|
447 |
+
[ -1, Conv, [8, 2, 3, 1]], #33 Driving area segmentation head
|
448 |
+
|
449 |
+
[ 16, Conv, [256, 128, 3, 1]], #34
|
450 |
+
[ -1, Upsample, [None, 2, 'nearest']], #35
|
451 |
+
[ -1, BottleneckCSP, [128, 64, 1, False]], #36
|
452 |
+
[ -1, Conv, [64, 32, 3, 1]], #37
|
453 |
+
[ -1, Upsample, [None, 2, 'nearest']], #38
|
454 |
+
[ -1, Conv, [32, 16, 3, 1]], #39
|
455 |
+
[ -1, BottleneckCSP, [16, 8, 1, False]], #40
|
456 |
+
[ -1, Upsample, [None, 2, 'nearest']], #41
|
457 |
+
[ -1, Conv, [8, 2, 3, 1]] #42 Lane line segmentation head
|
458 |
+
]
|
459 |
+
|
460 |
+
|
461 |
+
class MCnet(nn.Module):
|
462 |
+
def __init__(self, block_cfg, **kwargs):
|
463 |
+
super(MCnet, self).__init__()
|
464 |
+
layers, save= [], []
|
465 |
+
self.nc = 1
|
466 |
+
self.detector_index = -1
|
467 |
+
self.det_out_idx = block_cfg[0][0]
|
468 |
+
self.seg_out_idx = block_cfg[0][1:]
|
469 |
+
|
470 |
+
|
471 |
+
# Build model
|
472 |
+
for i, (from_, block, args) in enumerate(block_cfg[1:]):
|
473 |
+
block = eval(block) if isinstance(block, str) else block # eval strings
|
474 |
+
if block is Detect:
|
475 |
+
self.detector_index = i
|
476 |
+
block_ = block(*args)
|
477 |
+
block_.index, block_.from_ = i, from_
|
478 |
+
layers.append(block_)
|
479 |
+
save.extend(x % i for x in ([from_] if isinstance(from_, int) else from_) if x != -1) # append to savelist
|
480 |
+
assert self.detector_index == block_cfg[0][0]
|
481 |
+
|
482 |
+
self.model, self.save = nn.Sequential(*layers), sorted(save)
|
483 |
+
self.names = [str(i) for i in range(self.nc)]
|
484 |
+
|
485 |
+
# set stride、anchor for detector
|
486 |
+
Detector = self.model[self.detector_index] # detector
|
487 |
+
if isinstance(Detector, Detect):
|
488 |
+
s = 128 # 2x min stride
|
489 |
+
# for x in self.forward(torch.zeros(1, 3, s, s)):
|
490 |
+
# print (x.shape)
|
491 |
+
with torch.no_grad():
|
492 |
+
model_out = self.forward(torch.zeros(1, 3, s, s))
|
493 |
+
detects, _, _= model_out
|
494 |
+
Detector.stride = torch.tensor([s / x.shape[-2] for x in detects]) # forward
|
495 |
+
# print("stride"+str(Detector.stride ))
|
496 |
+
Detector.anchors /= Detector.stride.view(-1, 1, 1) # Set the anchors for the corresponding scale
|
497 |
+
check_anchor_order(Detector)
|
498 |
+
self.stride = Detector.stride
|
499 |
+
self._initialize_biases()
|
500 |
+
|
501 |
+
initialize_weights(self)
|
502 |
+
|
503 |
+
def forward(self, x):
|
504 |
+
cache = []
|
505 |
+
out = []
|
506 |
+
det_out = None
|
507 |
+
Da_fmap = []
|
508 |
+
LL_fmap = []
|
509 |
+
for i, block in enumerate(self.model):
|
510 |
+
if block.from_ != -1:
|
511 |
+
x = cache[block.from_] if isinstance(block.from_, int) else [x if j == -1 else cache[j] for j in block.from_] #calculate concat detect
|
512 |
+
x = block(x)
|
513 |
+
if i in self.seg_out_idx: #save driving area segment result
|
514 |
+
m=nn.Sigmoid()
|
515 |
+
out.append(m(x))
|
516 |
+
if i == self.detector_index:
|
517 |
+
det_out = x
|
518 |
+
cache.append(x if block.index in self.save else None)
|
519 |
+
out.insert(0,det_out)
|
520 |
+
return out
|
521 |
+
|
522 |
+
|
523 |
+
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
524 |
+
# https://arxiv.org/abs/1708.02002 section 3.3
|
525 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
526 |
+
# m = self.model[-1] # Detect() module
|
527 |
+
m = self.model[self.detector_index] # Detect() module
|
528 |
+
for mi, s in zip(m.m, m.stride): # from
|
529 |
+
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
530 |
+
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
531 |
+
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
532 |
+
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
533 |
+
|
534 |
+
def get_net(cfg, **kwargs):
|
535 |
+
m_block_cfg = YOLOP
|
536 |
+
model = MCnet(m_block_cfg, **kwargs)
|
537 |
+
return model
|
538 |
+
|
539 |
+
|
540 |
+
if __name__ == "__main__":
|
541 |
+
from torch.utils.tensorboard import SummaryWriter
|
542 |
+
model = get_net(False)
|
543 |
+
input_ = torch.randn((1, 3, 256, 256))
|
544 |
+
gt_ = torch.rand((1, 2, 256, 256))
|
545 |
+
metric = SegmentationMetric(2)
|
546 |
+
model_out,SAD_out = model(input_)
|
547 |
+
detects, dring_area_seg, lane_line_seg = model_out
|
548 |
+
Da_fmap, LL_fmap = SAD_out
|
549 |
+
for det in detects:
|
550 |
+
print(det.shape)
|
551 |
+
print(dring_area_seg.shape)
|
552 |
+
print(lane_line_seg.shape)
|