Spaces:
Sleeping
Sleeping
File size: 12,414 Bytes
d2afe6a 63c19db a132086 d575bf1 59294b2 d2afe6a 2f2e7f5 af25b07 2f2e7f5 a34424c 2f2e7f5 30481ca d2afe6a 6e0dbd0 ce3b078 6e0dbd0 63634b7 6e0dbd0 b89d5de 1370b21 b89d5de 67d0b01 b89d5de 94de35e b89d5de 59a941a 5db4696 2f2e7f5 5d628fa 2f2e7f5 a75174f 2f2e7f5 94de35e 2f2e7f5 b89d5de 237f69a 375525b d2afe6a a75174f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import gradio as gr
import os
#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt")
os.system("wget https://github.com/hustvl/YOLOP/raw/main/weights/End-to-end.pth")
#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt")
#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
os.system("wget https://github.com/CAIC-AD/YOLOPv2/releases/download/V0.0.1/yolopv2.pt")
import argparse
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from lib.config import cfg
from lib.models import get_net
import torchvision.transforms as transforms
from lib.dataset.DemoDataset import LoadImages as LoadImages1
#from lib.core.general import non_max_suppression, scale_coords
from lib.utils.plot import plot_one_box as plot_one_box1
from lib.utils.plot import show_seg_result as show_seg_result1
from tqdm import tqdm
from utils.functions import \
time_synchronized,select_device, increment_path,\
scale_coords,xyxy2xywh,non_max_suppression,split_for_trace_model,\
driving_area_mask,lane_line_mask,plot_one_box,show_seg_result,\
AverageMeter,\
LoadImages
from PIL import Image
def detect(img,model):
#with torch.no_grad():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)')
parser.add_argument('--source', type=str, default='Inference/', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--trace', action='store_true', help='trace model')
opt = parser.parse_args()
img.save("Inference/test.jpg")
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
save_img = True # save inference images
#webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
#('rtsp://', 'rtmp://', 'http://', 'https://'))
#print(webcam)
# Directories
#save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
#(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
#set_logging()
device = select_device(opt.device)
#print(device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
inf_time = AverageMeter()
waste_time = AverageMeter()
nms_time = AverageMeter()
# Load model
#model = attempt_load(weights, map_location=device) # load FP32 model
#stride = int(model.stride.max()) # model stride
#imgsz = check_img_size(imgsz, s=stride) # check img_size
if weights == 'yolopv2.pt':
print(weights)
stride =32
model = torch.jit.load(weights,map_location=device)
model.eval()
# Set Dataloader
vid_path, vid_writer = None, None
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Run inference
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
print(img.shape)
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
print(img.shape)
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
[pred,anchor_grid],seg,ll= model(img)
t2 = time_synchronized()
# waste time: the incompatibility of torch.jit.trace causes extra time consumption in demo version
# but this problem will not appear in offical version
tw1 = time_synchronized()
pred = split_for_trace_model(pred,anchor_grid)
tw2 = time_synchronized()
# Apply NMS
t3 = time_synchronized()
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t4 = time_synchronized()
da_seg_mask = driving_area_mask(seg)
ll_seg_mask = lane_line_mask(ll)
print(da_seg_mask.shape)
# Process detections
for i, det in enumerate(pred): # detections per image
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
#save_path = str(save_dir / p.name) # img.jpg
#txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
#for c in det[:, -1].unique():
#n = (det[:, -1] == c).sum() # detections per class
#s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
if save_img : # Add bbox to image
plot_one_box(xyxy, im0, line_thickness=3)
# Print time (inference)
print(f'{s}Done. ({t2 - t1:.3f}s)')
show_seg_result(im0, (da_seg_mask,ll_seg_mask), is_demo=True)
inf_time.update(t2-t1,img.size(0))
nms_time.update(t4-t3,img.size(0))
#waste_time.update(tw2-tw1,img.size(0))
print('Done. (%.3fs)' % (time.time() - t0))
print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
if weights == 'yolop.pt':
weights = 'End-to-end.pth'
print(weights)
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
transform=transforms.Compose([
transforms.ToTensor(),
normalize,
])
model = get_net(cfg)
checkpoint = torch.load(weights, map_location= device)
#print(checkpoint)
model.load_state_dict(checkpoint['state_dict'])
model = model.to(device)
dataset = LoadImages1(source, img_size=imgsz)
bs = 1 # batch_size
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Run inference
t0 = time.time()
vid_path, vid_writer = None, None
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) # run once
model.eval()
for i, (path, img, img_det, vid_cap,shapes) in tqdm(enumerate(dataset),total = len(dataset)):
print(img.shape)
img = transform(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
det_out, da_seg_out,ll_seg_out= model(img)
t2 = time_synchronized()
# if i == 0:
# print(det_out)
inf_out, _ = det_out
inf_time.update(t2-t1,img.size(0))
# Apply NMS
t3 = time_synchronized()
det_pred = non_max_suppression(inf_out, conf_thres=opt.conf_thres, iou_thres=opt.iou_thres, classes=None, agnostic=False)
t4 = time_synchronized()
nms_time.update(t4-t3,img.size(0))
det=det_pred[0]
#save_path = str(save_dir +'/'+ 'img.jpg')
_, _, height, width = img.shape
h,w,_=img_det.shape
pad_w, pad_h = shapes[1][1]
pad_w = int(pad_w)
pad_h = int(pad_h)
ratio = shapes[1][0][1]
da_predict = da_seg_out[:, :, pad_h:(height-pad_h),pad_w:(width-pad_w)]
da_seg_mask = torch.nn.functional.interpolate(da_predict, scale_factor=int(1/ratio), mode='bilinear')
_, da_seg_mask = torch.max(da_seg_mask, 1)
da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy()
# da_seg_mask = morphological_process(da_seg_mask, kernel_size=7)
ll_predict = ll_seg_out[:, :,pad_h:(height-pad_h),pad_w:(width-pad_w)]
ll_seg_mask = torch.nn.functional.interpolate(ll_predict, scale_factor=int(1/ratio), mode='bilinear')
_, ll_seg_mask = torch.max(ll_seg_mask, 1)
ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy()
# Lane line post-processing
#ll_seg_mask = morphological_process(ll_seg_mask, kernel_size=7, func_type=cv2.MORPH_OPEN)
#ll_seg_mask = connect_lane(ll_seg_mask)
img_det = show_seg_result1(img_det, (da_seg_mask, ll_seg_mask), _, _, is_demo=True)
if len(det):
det[:,:4] = scale_coords(img.shape[2:],det[:,:4],img_det.shape).round()
for *xyxy,conf,cls in reversed(det):
label_det_pred = f'{names[int(cls)]} {conf:.2f}'
plot_one_box1(xyxy, img_det , label=label_det_pred, color=colors[int(cls)], line_thickness=2)
im0 = img_det
print('Done. (%.3fs)' % (time.time() - t0))
print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
#inf_time.update(t2-t1,img.size(0))
#nms_time.update(t4-t3,img.size(0))
#waste_time.update(tw2-tw1,img.size(0))
#print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
#print(f'Done. ({time.time() - t0:.3f}s)')
#print(im0.shape)
return Image.fromarray(im0[:,:,::-1])
gr.Interface(detect,[gr.Image(type="pil"),gr.Dropdown(choices=["yolopv2","yolop"])], gr.Image(type="pil"),title="Yolopv2",examples=[["example.jpeg", "yolopv2"]],description="demo for <a href='https://github.com/CAIC-AD/YOLOPv2' style='text-decoration: underline' target='_blank'>yolopv2</a> 🚀: Better, Faster, Stronger for Panoptic driving Perception ").launch()
|