File size: 12,414 Bytes
d2afe6a
 
 
63c19db
a132086
d575bf1
 
59294b2
d2afe6a
 
 
 
 
 
 
 
 
 
2f2e7f5
 
 
 
 
 
af25b07
 
2f2e7f5
 
a34424c
 
 
 
 
 
2f2e7f5
30481ca
d2afe6a
 
 
 
6e0dbd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce3b078
 
6e0dbd0
 
63634b7
6e0dbd0
 
 
 
 
 
 
 
 
 
 
 
 
b89d5de
1370b21
b89d5de
 
 
 
 
 
 
 
 
67d0b01
b89d5de
 
94de35e
b89d5de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59a941a
 
 
5db4696
 
 
2f2e7f5
5d628fa
2f2e7f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a75174f
2f2e7f5
 
 
 
94de35e
2f2e7f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89d5de
 
 
 
 
 
 
 
237f69a
375525b
d2afe6a
 
 
a75174f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import gradio as gr
import os

#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt")
os.system("wget https://github.com/hustvl/YOLOP/raw/main/weights/End-to-end.pth")
#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt")
#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
os.system("wget https://github.com/CAIC-AD/YOLOPv2/releases/download/V0.0.1/yolopv2.pt")

import argparse
import time
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random

from lib.config import cfg

from lib.models import get_net
import torchvision.transforms as transforms
from lib.dataset.DemoDataset import LoadImages as LoadImages1
#from lib.core.general import non_max_suppression, scale_coords 
from lib.utils.plot import plot_one_box as plot_one_box1
from lib.utils.plot import show_seg_result as show_seg_result1
from tqdm import tqdm

from utils.functions import \
        time_synchronized,select_device, increment_path,\
        scale_coords,xyxy2xywh,non_max_suppression,split_for_trace_model,\
        driving_area_mask,lane_line_mask,plot_one_box,show_seg_result,\
        AverageMeter,\
        LoadImages
      

from PIL import Image
 

def detect(img,model):
    #with torch.no_grad():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)')
    parser.add_argument('--source', type=str, default='Inference/', help='source')  # file/folder, 0 for webcam
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='display results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--trace', action='store_true', help='trace model')
    opt = parser.parse_args()
    img.save("Inference/test.jpg")
    source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
    save_img = True  # save inference images
    #webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        #('rtsp://', 'rtmp://', 'http://', 'https://'))
    #print(webcam)
    # Directories
    #save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    #(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    #set_logging()
    device = select_device(opt.device)
    #print(device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    inf_time = AverageMeter()
    waste_time = AverageMeter()
    nms_time = AverageMeter()

    # Load model
    #model = attempt_load(weights, map_location=device)  # load FP32 model
    #stride = int(model.stride.max())  # model stride
    #imgsz = check_img_size(imgsz, s=stride)  # check img_size
    if weights == 'yolopv2.pt':
        print(weights)
        stride =32
        model  = torch.jit.load(weights,map_location=device)
        model.eval()
    
        # Set Dataloader
        vid_path, vid_writer = None, None
        dataset = LoadImages(source, img_size=imgsz, stride=stride)
    
        # Run inference

        t0 = time.time()
        for path, img, im0s, vid_cap in dataset:
            print(img.shape)
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            print(img.shape)
    
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
    
            # Inference
            t1 = time_synchronized()
            [pred,anchor_grid],seg,ll= model(img)
            t2 = time_synchronized()
    
            # waste time: the incompatibility of  torch.jit.trace causes extra time consumption in demo version 
            # but this problem will not appear in offical version 
            tw1 = time_synchronized()
            pred = split_for_trace_model(pred,anchor_grid)
            tw2 = time_synchronized()
    
            # Apply NMS
            t3 = time_synchronized()
            pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
            t4 = time_synchronized()
    
            da_seg_mask = driving_area_mask(seg)
            ll_seg_mask = lane_line_mask(ll)
                
            print(da_seg_mask.shape)
            # Process detections
            for i, det in enumerate(pred):  # detections per image
              
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
    
                p = Path(p)  # to Path
                #save_path = str(save_dir / p.name)  # img.jpg
                #txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
                s += '%gx%g ' % img.shape[2:]  # print string
                gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
    
                    # Print results
                    #for c in det[:, -1].unique():
                        #n = (det[:, -1] == c).sum()  # detections per class
                        #s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
    
                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        if save_txt:  # Write to file
                            xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                            line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
               
                        if save_img :  # Add bbox to image
                            plot_one_box(xyxy, im0, line_thickness=3)
    
                # Print time (inference)
                print(f'{s}Done. ({t2 - t1:.3f}s)')
                show_seg_result(im0, (da_seg_mask,ll_seg_mask), is_demo=True)
        inf_time.update(t2-t1,img.size(0))
        nms_time.update(t4-t3,img.size(0))
        #waste_time.update(tw2-tw1,img.size(0))
        print('Done. (%.3fs)' % (time.time() - t0))
        print('inf : (%.4fs/frame)   nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
    
                
    if weights == 'yolop.pt':
        weights = 'End-to-end.pth'
        print(weights)
    
        normalize = transforms.Normalize(
        mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
            )
        
        transform=transforms.Compose([
                    transforms.ToTensor(),
                    normalize,
                ])
        model = get_net(cfg)
        checkpoint = torch.load(weights, map_location= device)
        #print(checkpoint)
        model.load_state_dict(checkpoint['state_dict'])
        model = model.to(device)

        dataset = LoadImages1(source, img_size=imgsz)
        bs = 1  # batch_size

        # Get names and colors
        names = model.module.names if hasattr(model, 'module') else model.names
        colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
    
        # Run inference
        t0 = time.time()
    
        vid_path, vid_writer = None, None
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img)   # run once
        model.eval()
    
  
        for i, (path, img, img_det, vid_cap,shapes) in tqdm(enumerate(dataset),total = len(dataset)):
            print(img.shape)
            img = transform(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
            # Inference
            t1 = time_synchronized()
            det_out, da_seg_out,ll_seg_out= model(img)
            t2 = time_synchronized()
            # if i == 0:
            #     print(det_out)
            inf_out, _ = det_out
            inf_time.update(t2-t1,img.size(0))
    
            # Apply NMS
            t3 = time_synchronized()
            det_pred = non_max_suppression(inf_out, conf_thres=opt.conf_thres, iou_thres=opt.iou_thres, classes=None, agnostic=False)
            t4 = time_synchronized()
    
            nms_time.update(t4-t3,img.size(0))
            det=det_pred[0]
    
            #save_path = str(save_dir +'/'+ 'img.jpg')
    
            _, _, height, width = img.shape
            h,w,_=img_det.shape
            pad_w, pad_h = shapes[1][1]
            pad_w = int(pad_w)
            pad_h = int(pad_h)
            ratio = shapes[1][0][1]
    
            da_predict = da_seg_out[:, :, pad_h:(height-pad_h),pad_w:(width-pad_w)]
            da_seg_mask = torch.nn.functional.interpolate(da_predict, scale_factor=int(1/ratio), mode='bilinear')
            _, da_seg_mask = torch.max(da_seg_mask, 1)
            da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy()
            # da_seg_mask = morphological_process(da_seg_mask, kernel_size=7)
    
            
            ll_predict = ll_seg_out[:, :,pad_h:(height-pad_h),pad_w:(width-pad_w)]
            ll_seg_mask = torch.nn.functional.interpolate(ll_predict, scale_factor=int(1/ratio), mode='bilinear')
            _, ll_seg_mask = torch.max(ll_seg_mask, 1)
            ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy()
            # Lane line post-processing
            #ll_seg_mask = morphological_process(ll_seg_mask, kernel_size=7, func_type=cv2.MORPH_OPEN)
            #ll_seg_mask = connect_lane(ll_seg_mask)
    
            img_det = show_seg_result1(img_det, (da_seg_mask, ll_seg_mask), _, _, is_demo=True)
    
            if len(det):
                det[:,:4] = scale_coords(img.shape[2:],det[:,:4],img_det.shape).round()
                for *xyxy,conf,cls in reversed(det):
                    label_det_pred = f'{names[int(cls)]} {conf:.2f}'
                    plot_one_box1(xyxy, img_det , label=label_det_pred, color=colors[int(cls)], line_thickness=2)
            
     
   
        im0 = img_det

        print('Done. (%.3fs)' % (time.time() - t0))
        print('inf : (%.4fs/frame)   nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
    
      
    #inf_time.update(t2-t1,img.size(0))
    #nms_time.update(t4-t3,img.size(0))
    #waste_time.update(tw2-tw1,img.size(0))
    #print('inf : (%.4fs/frame)   nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
    #print(f'Done. ({time.time() - t0:.3f}s)')
    #print(im0.shape)
   
    
    return Image.fromarray(im0[:,:,::-1])

   
gr.Interface(detect,[gr.Image(type="pil"),gr.Dropdown(choices=["yolopv2","yolop"])], gr.Image(type="pil"),title="Yolopv2",examples=[["example.jpeg", "yolopv2"]],description="demo for <a href='https://github.com/CAIC-AD/YOLOPv2' style='text-decoration: underline' target='_blank'>yolopv2</a> 🚀: Better, Faster, Stronger for Panoptic driving Perception ").launch()