Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -80,6 +80,88 @@ def detect(img,model):
|
|
80 |
#stride = int(model.stride.max()) # model stride
|
81 |
#imgsz = check_img_size(imgsz, s=stride) # check img_size
|
82 |
print(weights)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
if weights == 'yolop.pt':
|
84 |
weights = 'End-to-end.pth'
|
85 |
print(weights)
|
@@ -183,94 +265,6 @@ def detect(img,model):
|
|
183 |
|
184 |
print('Done. (%.3fs)' % (time.time() - t0))
|
185 |
print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
if weights == 'yolopv2.pt':
|
191 |
-
|
192 |
-
|
193 |
-
stride =32
|
194 |
-
model = torch.jit.load(weights,map_location=device)
|
195 |
-
model.eval()
|
196 |
-
|
197 |
-
# Set Dataloader
|
198 |
-
vid_path, vid_writer = None, None
|
199 |
-
dataset = LoadImages(source, img_size=imgsz, stride=stride)
|
200 |
-
|
201 |
-
# Run inference
|
202 |
-
if device.type != 'cpu':
|
203 |
-
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
204 |
-
t0 = time.time()
|
205 |
-
for path, img, im0s, vid_cap in dataset:
|
206 |
-
img = torch.from_numpy(img).to(device)
|
207 |
-
img = img.half() if half else img.float() # uint8 to fp16/32
|
208 |
-
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
209 |
-
print(img.shape)
|
210 |
-
|
211 |
-
if img.ndimension() == 3:
|
212 |
-
img = img.unsqueeze(0)
|
213 |
-
|
214 |
-
# Inference
|
215 |
-
t1 = time_synchronized()
|
216 |
-
[pred,anchor_grid],seg,ll= model(img)
|
217 |
-
t2 = time_synchronized()
|
218 |
-
|
219 |
-
# waste time: the incompatibility of torch.jit.trace causes extra time consumption in demo version
|
220 |
-
# but this problem will not appear in offical version
|
221 |
-
tw1 = time_synchronized()
|
222 |
-
pred = split_for_trace_model(pred,anchor_grid)
|
223 |
-
tw2 = time_synchronized()
|
224 |
-
|
225 |
-
# Apply NMS
|
226 |
-
t3 = time_synchronized()
|
227 |
-
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
228 |
-
t4 = time_synchronized()
|
229 |
-
|
230 |
-
da_seg_mask = driving_area_mask(seg)
|
231 |
-
ll_seg_mask = lane_line_mask(ll)
|
232 |
-
|
233 |
-
print(da_seg_mask.shape)
|
234 |
-
# Process detections
|
235 |
-
for i, det in enumerate(pred): # detections per image
|
236 |
-
|
237 |
-
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
|
238 |
-
|
239 |
-
p = Path(p) # to Path
|
240 |
-
#save_path = str(save_dir / p.name) # img.jpg
|
241 |
-
#txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
|
242 |
-
s += '%gx%g ' % img.shape[2:] # print string
|
243 |
-
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
244 |
-
if len(det):
|
245 |
-
# Rescale boxes from img_size to im0 size
|
246 |
-
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
247 |
-
|
248 |
-
# Print results
|
249 |
-
#for c in det[:, -1].unique():
|
250 |
-
#n = (det[:, -1] == c).sum() # detections per class
|
251 |
-
#s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
252 |
-
|
253 |
-
# Write results
|
254 |
-
for *xyxy, conf, cls in reversed(det):
|
255 |
-
if save_txt: # Write to file
|
256 |
-
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
257 |
-
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
|
258 |
-
|
259 |
-
|
260 |
-
if save_img : # Add bbox to image
|
261 |
-
plot_one_box(xyxy, im0, line_thickness=3)
|
262 |
-
|
263 |
-
# Print time (inference)
|
264 |
-
print(f'{s}Done. ({t2 - t1:.3f}s)')
|
265 |
-
show_seg_result(im0, (da_seg_mask,ll_seg_mask), is_demo=True)
|
266 |
-
|
267 |
-
|
268 |
-
#inf_time.update(t2-t1,img.size(0))
|
269 |
-
#nms_time.update(t4-t3,img.size(0))
|
270 |
-
#waste_time.update(tw2-tw1,img.size(0))
|
271 |
-
#print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
|
272 |
-
#print(f'Done. ({time.time() - t0:.3f}s)')
|
273 |
-
#print(im0.shape)
|
274 |
|
275 |
return Image.fromarray(im0[:,:,::-1])
|
276 |
|
|
|
80 |
#stride = int(model.stride.max()) # model stride
|
81 |
#imgsz = check_img_size(imgsz, s=stride) # check img_size
|
82 |
print(weights)
|
83 |
+
if weights == 'yolopv2.pt':
|
84 |
+
stride =32
|
85 |
+
model = torch.jit.load(weights,map_location=device)
|
86 |
+
model.eval()
|
87 |
+
|
88 |
+
# Set Dataloader
|
89 |
+
vid_path, vid_writer = None, None
|
90 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride)
|
91 |
+
|
92 |
+
# Run inference
|
93 |
+
if device.type != 'cpu':
|
94 |
+
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
95 |
+
t0 = time.time()
|
96 |
+
for path, img, im0s, vid_cap in dataset:
|
97 |
+
img = torch.from_numpy(img).to(device)
|
98 |
+
img = img.half() if half else img.float() # uint8 to fp16/32
|
99 |
+
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
100 |
+
print(img.shape)
|
101 |
+
|
102 |
+
if img.ndimension() == 3:
|
103 |
+
img = img.unsqueeze(0)
|
104 |
+
|
105 |
+
# Inference
|
106 |
+
t1 = time_synchronized()
|
107 |
+
[pred,anchor_grid],seg,ll= model(img)
|
108 |
+
t2 = time_synchronized()
|
109 |
+
|
110 |
+
# waste time: the incompatibility of torch.jit.trace causes extra time consumption in demo version
|
111 |
+
# but this problem will not appear in offical version
|
112 |
+
tw1 = time_synchronized()
|
113 |
+
pred = split_for_trace_model(pred,anchor_grid)
|
114 |
+
tw2 = time_synchronized()
|
115 |
+
|
116 |
+
# Apply NMS
|
117 |
+
t3 = time_synchronized()
|
118 |
+
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
119 |
+
t4 = time_synchronized()
|
120 |
+
|
121 |
+
da_seg_mask = driving_area_mask(seg)
|
122 |
+
ll_seg_mask = lane_line_mask(ll)
|
123 |
+
|
124 |
+
print(da_seg_mask.shape)
|
125 |
+
# Process detections
|
126 |
+
for i, det in enumerate(pred): # detections per image
|
127 |
+
|
128 |
+
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
|
129 |
+
|
130 |
+
p = Path(p) # to Path
|
131 |
+
#save_path = str(save_dir / p.name) # img.jpg
|
132 |
+
#txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
|
133 |
+
s += '%gx%g ' % img.shape[2:] # print string
|
134 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
135 |
+
if len(det):
|
136 |
+
# Rescale boxes from img_size to im0 size
|
137 |
+
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
138 |
+
|
139 |
+
# Print results
|
140 |
+
#for c in det[:, -1].unique():
|
141 |
+
#n = (det[:, -1] == c).sum() # detections per class
|
142 |
+
#s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
143 |
+
|
144 |
+
# Write results
|
145 |
+
for *xyxy, conf, cls in reversed(det):
|
146 |
+
if save_txt: # Write to file
|
147 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
148 |
+
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
|
149 |
+
|
150 |
+
|
151 |
+
if save_img : # Add bbox to image
|
152 |
+
plot_one_box(xyxy, im0, line_thickness=3)
|
153 |
+
|
154 |
+
# Print time (inference)
|
155 |
+
print(f'{s}Done. ({t2 - t1:.3f}s)')
|
156 |
+
show_seg_result(im0, (da_seg_mask,ll_seg_mask), is_demo=True)
|
157 |
+
|
158 |
+
|
159 |
+
#inf_time.update(t2-t1,img.size(0))
|
160 |
+
#nms_time.update(t4-t3,img.size(0))
|
161 |
+
#waste_time.update(tw2-tw1,img.size(0))
|
162 |
+
#print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
|
163 |
+
#print(f'Done. ({time.time() - t0:.3f}s)')
|
164 |
+
#print(im0.shape)
|
165 |
if weights == 'yolop.pt':
|
166 |
weights = 'End-to-end.pth'
|
167 |
print(weights)
|
|
|
265 |
|
266 |
print('Done. (%.3fs)' % (time.time() - t0))
|
267 |
print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
return Image.fromarray(im0[:,:,::-1])
|
270 |
|