prithivMLmods commited on
Commit
40dd3a7
·
verified ·
1 Parent(s): 26f7b76

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +212 -78
app.py CHANGED
@@ -6,11 +6,71 @@ import torch
6
  import edge_tts
7
  import asyncio
8
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
9
- from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
10
  from transformers.image_utils import load_image
11
- from huggingface_hub import InferenceClient
12
  import time
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  # Load text-only model and tokenizer
15
  model_id = "prithivMLmods/FastThink-0.5B-Tiny"
16
  tokenizer = AutoTokenizer.from_pretrained(model_id)
@@ -21,6 +81,11 @@ model = AutoModelForCausalLM.from_pretrained(
21
  )
22
  model.eval()
23
 
 
 
 
 
 
24
  # Load multimodal (OCR) model and processor
25
  MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
26
  processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
@@ -30,20 +95,6 @@ model_m = Qwen2VLForConditionalGeneration.from_pretrained(
30
  torch_dtype=torch.float16
31
  ).to("cuda").eval()
32
 
33
- TTS_VOICES = [
34
- "en-US-JennyNeural", # @tts1
35
- "en-US-GuyNeural", # @tts2
36
- ]
37
-
38
- def image_gen(prompt):
39
- """Generate image using API"""
40
- try:
41
- client = InferenceClient("prithivMLmods/STABLE-HAMSTER")
42
- return client.text_to_image(prompt)
43
- except:
44
- client_flux = InferenceClient("black-forest-labs/FLUX.1-schnell")
45
- return client_flux.text_to_image(prompt)
46
-
47
  async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
48
  """Convert text to speech using Edge TTS and save as MP3"""
49
  communicate = edge_tts.Communicate(text, voice)
@@ -51,85 +102,168 @@ async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
51
  return output_file
52
 
53
  def clean_chat_history(chat_history):
54
- return [msg for msg in chat_history if isinstance(msg, dict) and isinstance(msg.get("content"), str)]
 
 
 
 
 
 
 
 
55
 
56
  @spaces.GPU
57
- def generate(input_dict: dict, chat_history: list[dict], max_new_tokens=1024, temperature=0.6, top_p=0.9, top_k=50, repetition_penalty=1.2):
58
- """Generates chatbot responses with multimodal input, TTS, and image generation."""
 
 
 
 
 
 
 
 
 
 
 
 
59
  text = input_dict["text"]
60
  files = input_dict.get("files", [])
61
- images = [load_image(file) for file in files] if files else []
62
-
63
- if text.startswith("@tts"):
64
- voice_index = next((i for i in range(1, 3) if text.startswith(f"@tts{i}")), None)
65
- if voice_index:
66
- voice = TTS_VOICES[voice_index - 1]
67
- text = text.replace(f"@tts{voice_index}", "").strip()
68
- conversation = [{"role": "user", "content": text}]
69
- else:
70
- voice = None
71
- elif text.startswith("@image"):
72
- query = text.replace("@image", "").strip()
73
- yield "Generating Image, Please wait..."
74
- image = image_gen(query)
75
- yield gr.Image(image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  else:
77
- conversation = clean_chat_history(chat_history) + [{"role": "user", "content": text}]
78
- if images:
79
- messages = [{
80
- "role": "user",
81
- "content": [
82
- *[{"type": "image", "image": img} for img in images],
83
- {"type": "text", "text": text},
84
- ]
85
- }]
86
- prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
87
- inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
88
- streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
89
- thread = Thread(target=model_m.generate, kwargs={**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens})
90
- thread.start()
91
- buffer = ""
92
- for new_text in streamer:
93
- buffer += new_text.replace("<|im_end|>", "")
94
- yield buffer
95
- else:
96
- input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
97
- streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
98
- thread = Thread(target=model.generate, kwargs={
99
- "input_ids": input_ids,
100
- "streamer": streamer,
101
- "max_new_tokens": max_new_tokens,
102
- "do_sample": True,
103
- "top_p": top_p,
104
- "top_k": top_k,
105
- "temperature": temperature,
106
- "num_beams": 1,
107
- "repetition_penalty": repetition_penalty,
108
- })
109
- thread.start()
110
- response = "".join([new_text for new_text in streamer])
111
- yield response
112
- if voice:
113
- output_file = asyncio.run(text_to_speech(response, voice))
114
- yield gr.Audio(output_file, autoplay=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
 
116
  demo = gr.ChatInterface(
117
  fn=generate,
118
  additional_inputs=[
119
- gr.Slider(label="Max new tokens", minimum=1, maximum=2048, step=1, value=1024),
120
  gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
121
- gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
122
  gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
123
  gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
124
  ],
125
  examples=[
126
- ["@tts1 Who is Nikola Tesla?"],
127
  [{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
128
- ["@image futuristic city at sunset"],
129
- ["A train travels 60 kilometers per hour. How far will it travel in 5 hours?"],
 
 
 
130
  ],
131
  cache_examples=False,
132
- description="# QwQ Edge 💬",
 
 
133
  fill_height=True,
134
  textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
135
  stop_btn="Stop Generation",
 
6
  import edge_tts
7
  import asyncio
8
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
9
+ from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
10
  from transformers.image_utils import load_image
 
11
  import time
12
 
13
+ # =============================================================================
14
+ # New imports and helper classes for image generation
15
+ # =============================================================================
16
+ try:
17
+ # We use Hugging Face’s InferenceClient as a generic image-generation API client.
18
+ from huggingface_hub import InferenceClient as HFInferenceClient
19
+ except ImportError:
20
+ HFInferenceClient = None
21
+
22
+ # A simple wrapper client for our primary image-generation space.
23
+ class Client:
24
+ def __init__(self, repo_id):
25
+ self.repo_id = repo_id
26
+ if HFInferenceClient is not None:
27
+ self.client = HFInferenceClient(repo_id)
28
+ else:
29
+ self.client = None
30
+
31
+ def predict(self, task, arg2, prompt, api_name):
32
+ if self.client is not None:
33
+ # Here we assume that calling the client with the prompt returns an image.
34
+ # (Depending on your API, you might need to adjust parameters.)
35
+ return self.client(prompt)
36
+ else:
37
+ raise Exception("HFInferenceClient not available")
38
+
39
+ def image_gen(prompt):
40
+ """
41
+ Uses the STABLE-HAMSTER space to generate an image based on the prompt.
42
+ """
43
+ client = Client("prithivMLmods/STABLE-HAMSTER")
44
+ return client.predict("Image Generation", None, prompt, api_name="/stable_hamster")
45
+
46
+ # =============================================================================
47
+ # Original Code (with modifications below)
48
+ # =============================================================================
49
+
50
+ DESCRIPTION = """
51
+ # QwQ Edge 💬
52
+ """
53
+
54
+ css = '''
55
+ h1 {
56
+ text-align: center;
57
+ display: block;
58
+ }
59
+
60
+ #duplicate-button {
61
+ margin: auto;
62
+ color: #fff;
63
+ background: #1565c0;
64
+ border-radius: 100vh;
65
+ }
66
+ '''
67
+
68
+ MAX_MAX_NEW_TOKENS = 2048
69
+ DEFAULT_MAX_NEW_TOKENS = 1024
70
+ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
71
+
72
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
73
+
74
  # Load text-only model and tokenizer
75
  model_id = "prithivMLmods/FastThink-0.5B-Tiny"
76
  tokenizer = AutoTokenizer.from_pretrained(model_id)
 
81
  )
82
  model.eval()
83
 
84
+ TTS_VOICES = [
85
+ "en-US-JennyNeural", # @tts1
86
+ "en-US-GuyNeural", # @tts2
87
+ ]
88
+
89
  # Load multimodal (OCR) model and processor
90
  MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
91
  processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
 
95
  torch_dtype=torch.float16
96
  ).to("cuda").eval()
97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
  async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
99
  """Convert text to speech using Edge TTS and save as MP3"""
100
  communicate = edge_tts.Communicate(text, voice)
 
102
  return output_file
103
 
104
  def clean_chat_history(chat_history):
105
+ """
106
+ Filter out any chat entries whose "content" is not a string.
107
+ This helps prevent errors when concatenating previous messages.
108
+ """
109
+ cleaned = []
110
+ for msg in chat_history:
111
+ if isinstance(msg, dict) and isinstance(msg.get("content"), str):
112
+ cleaned.append(msg)
113
+ return cleaned
114
 
115
  @spaces.GPU
116
+ def generate(
117
+ input_dict: dict,
118
+ chat_history: list[dict],
119
+ max_new_tokens: int = 1024,
120
+ temperature: float = 0.6,
121
+ top_p: float = 0.9,
122
+ top_k: int = 50,
123
+ repetition_penalty: float = 1.2,
124
+ ):
125
+ """
126
+ Generates chatbot responses with support for multimodal input, TTS, and now image generation.
127
+ If the query starts with an @tts command (e.g. "@tts1"), previous chat history is cleared.
128
+ If the query starts with an @image command, the image generation branch is used.
129
+ """
130
  text = input_dict["text"]
131
  files = input_dict.get("files", [])
132
+
133
+ # -------------------------------------------------------------------------
134
+ # NEW: Check for image generation command (@image)
135
+ # -------------------------------------------------------------------------
136
+ image_prefix = "@image"
137
+ if text.strip().lower().startswith(image_prefix):
138
+ # Remove the prefix and any extra whitespace
139
+ query = text[len(image_prefix):].strip()
140
+ yield "Generating Image, Please wait 10 sec..."
141
+ try:
142
+ image = image_gen(query)
143
+ # If the API returns a tuple (as in the snippet) use the second element;
144
+ # otherwise assume it returns an image directly.
145
+ if isinstance(image, (list, tuple)) and len(image) > 1:
146
+ yield gr.Image(image[1])
147
+ else:
148
+ yield gr.Image(image)
149
+ except Exception as e:
150
+ yield "Error in primary image generation, trying fallback..."
151
+ try:
152
+ # Use the fallback image generation client.
153
+ if HFInferenceClient is not None:
154
+ client_flux = HFInferenceClient("black-forest-labs/FLUX.1-schnell")
155
+ image = client_flux.text_to_image(query)
156
+ yield gr.Image(image)
157
+ else:
158
+ yield "Fallback client not available."
159
+ except Exception as fallback_error:
160
+ yield f"Error in image generation: {str(fallback_error)}"
161
+ return # End execution after processing the image-generation request.
162
+
163
+ # -------------------------------------------------------------------------
164
+ # Continue with the original processing (image files, TTS, or text conversation)
165
+ # -------------------------------------------------------------------------
166
+ if len(files) > 1:
167
+ images = [load_image(image) for image in files]
168
+ elif len(files) == 1:
169
+ images = [load_image(files[0])]
170
  else:
171
+ images = []
172
+
173
+ tts_prefix = "@tts"
174
+ is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
175
+ voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
176
+
177
+ if is_tts and voice_index:
178
+ voice = TTS_VOICES[voice_index - 1]
179
+ text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
180
+ # Clear any previous chat history to avoid concatenation issues
181
+ conversation = [{"role": "user", "content": text}]
182
+ else:
183
+ voice = None
184
+ text = text.replace(tts_prefix, "").strip()
185
+ conversation = clean_chat_history(chat_history)
186
+ conversation.append({"role": "user", "content": text})
187
+
188
+ if images:
189
+ # Multimodal branch using the OCR model
190
+ messages = [{
191
+ "role": "user",
192
+ "content": [
193
+ *[{"type": "image", "image": image} for image in images],
194
+ {"type": "text", "text": text},
195
+ ]
196
+ }]
197
+ prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
198
+ inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
199
+ streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
200
+ generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
201
+ thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
202
+ thread.start()
203
+
204
+ buffer = ""
205
+ yield "Thinking..."
206
+ for new_text in streamer:
207
+ buffer += new_text
208
+ buffer = buffer.replace("<|im_end|>", "")
209
+ time.sleep(0.01)
210
+ yield buffer
211
+ else:
212
+ # Text-only branch using the text model
213
+ input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
214
+ if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
215
+ input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
216
+ gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
217
+ input_ids = input_ids.to(model.device)
218
+ streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
219
+ generation_kwargs = {
220
+ "input_ids": input_ids,
221
+ "streamer": streamer,
222
+ "max_new_tokens": max_new_tokens,
223
+ "do_sample": True,
224
+ "top_p": top_p,
225
+ "top_k": top_k,
226
+ "temperature": temperature,
227
+ "num_beams": 1,
228
+ "repetition_penalty": repetition_penalty,
229
+ }
230
+ t = Thread(target=model.generate, kwargs=generation_kwargs)
231
+ t.start()
232
+
233
+ outputs = []
234
+ for new_text in streamer:
235
+ outputs.append(new_text)
236
+ yield "".join(outputs)
237
+
238
+ final_response = "".join(outputs)
239
+ yield final_response
240
+
241
+ if is_tts and voice:
242
+ output_file = asyncio.run(text_to_speech(final_response, voice))
243
+ yield gr.Audio(output_file, autoplay=True)
244
 
245
  demo = gr.ChatInterface(
246
  fn=generate,
247
  additional_inputs=[
248
+ gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
249
  gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
250
+ gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
251
  gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
252
  gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
253
  ],
254
  examples=[
255
+ ["@tts1 Who is Nikola Tesla, and why did he die?"],
256
  [{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
257
+ [{"text": "summarize the letter", "files": ["examples/1.png"]}],
258
+ ["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
259
+ ["Write a Python function to check if a number is prime."],
260
+ ["@tts2 What causes rainbows to form?"],
261
+ ["@image A beautiful sunset over a mountain range"],
262
  ],
263
  cache_examples=False,
264
+ type="messages",
265
+ description=DESCRIPTION,
266
+ css=css,
267
  fill_height=True,
268
  textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
269
  stop_btn="Stop Generation",