Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,34 +6,10 @@ import torch
|
|
6 |
import edge_tts
|
7 |
import asyncio
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
10 |
from transformers.image_utils import load_image
|
|
|
11 |
import time
|
12 |
-
from gradio_client import Client # For image generation API
|
13 |
-
|
14 |
-
DESCRIPTION = """
|
15 |
-
# QwQ Edge 💬
|
16 |
-
"""
|
17 |
-
|
18 |
-
css = '''
|
19 |
-
h1 {
|
20 |
-
text-align: center;
|
21 |
-
display: block;
|
22 |
-
}
|
23 |
-
|
24 |
-
#duplicate-button {
|
25 |
-
margin: auto;
|
26 |
-
color: #fff;
|
27 |
-
background: #1565c0;
|
28 |
-
border-radius: 100vh;
|
29 |
-
}
|
30 |
-
'''
|
31 |
-
|
32 |
-
MAX_MAX_NEW_TOKENS = 2048
|
33 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
34 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
35 |
-
|
36 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
37 |
|
38 |
# Load text-only model and tokenizer
|
39 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
@@ -45,11 +21,6 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
45 |
)
|
46 |
model.eval()
|
47 |
|
48 |
-
TTS_VOICES = [
|
49 |
-
"en-US-JennyNeural", # @tts1
|
50 |
-
"en-US-GuyNeural", # @tts2
|
51 |
-
]
|
52 |
-
|
53 |
# Load multimodal (OCR) model and processor
|
54 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
55 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
@@ -59,8 +30,19 @@ model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
59 |
torch_dtype=torch.float16
|
60 |
).to("cuda").eval()
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
66 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
@@ -68,155 +50,86 @@ async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
|
68 |
await communicate.save(output_file)
|
69 |
return output_file
|
70 |
|
71 |
-
def image_gen(prompt: str):
|
72 |
-
"""Generate an image using the Stable Hamster API"""
|
73 |
-
result = image_gen_client.predict("Image Generation", None, prompt, api_name="/stable_hamster")
|
74 |
-
return result[1] # Return the generated image
|
75 |
-
|
76 |
def clean_chat_history(chat_history):
|
77 |
-
""
|
78 |
-
Filter out any chat entries whose "content" is not a string.
|
79 |
-
This helps prevent errors when concatenating previous messages.
|
80 |
-
"""
|
81 |
-
cleaned = []
|
82 |
-
for msg in chat_history:
|
83 |
-
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
84 |
-
cleaned.append(msg)
|
85 |
-
return cleaned
|
86 |
|
87 |
@spaces.GPU
|
88 |
-
def generate(
|
89 |
-
|
90 |
-
chat_history: list[dict],
|
91 |
-
max_new_tokens: int = 1024,
|
92 |
-
temperature: float = 0.6,
|
93 |
-
top_p: float = 0.9,
|
94 |
-
top_k: int = 50,
|
95 |
-
repetition_penalty: float = 1.2,
|
96 |
-
):
|
97 |
-
"""
|
98 |
-
Generates chatbot responses with support for multimodal input, TTS, and image generation.
|
99 |
-
If the query starts with an @tts or @image command, previous chat history is cleared.
|
100 |
-
"""
|
101 |
text = input_dict["text"]
|
102 |
files = input_dict.get("files", [])
|
103 |
-
|
104 |
-
# Process image files if provided
|
105 |
-
if len(files) > 1:
|
106 |
-
images = [load_image(image) for image in files]
|
107 |
-
elif len(files) == 1:
|
108 |
-
images = [load_image(files[0])]
|
109 |
-
else:
|
110 |
-
images = []
|
111 |
-
|
112 |
-
# Check for TTS or Image Generation commands
|
113 |
-
tts_prefix = "@tts"
|
114 |
-
image_prefix = "@image"
|
115 |
-
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
116 |
-
is_image = text.strip().lower().startswith(image_prefix)
|
117 |
|
118 |
-
if
|
119 |
-
voice_index = next((i for i in range(1, 3) if text.
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
127 |
else:
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
167 |
-
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
168 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
169 |
-
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
170 |
-
input_ids = input_ids.to(model.device)
|
171 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
172 |
-
generation_kwargs = {
|
173 |
-
"input_ids": input_ids,
|
174 |
-
"streamer": streamer,
|
175 |
-
"max_new_tokens": max_new_tokens,
|
176 |
-
"do_sample": True,
|
177 |
-
"top_p": top_p,
|
178 |
-
"top_k": top_k,
|
179 |
-
"temperature": temperature,
|
180 |
-
"num_beams": 1,
|
181 |
-
"repetition_penalty": repetition_penalty,
|
182 |
-
}
|
183 |
-
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
184 |
-
t.start()
|
185 |
-
|
186 |
-
outputs = []
|
187 |
-
for new_text in streamer:
|
188 |
-
outputs.append(new_text)
|
189 |
-
yield "".join(outputs)
|
190 |
-
|
191 |
-
final_response = "".join(outputs)
|
192 |
-
yield final_response
|
193 |
-
|
194 |
-
if is_tts and voice:
|
195 |
-
output_file = asyncio.run(text_to_speech(final_response, voice))
|
196 |
-
yield gr.Audio(output_file, autoplay=True)
|
197 |
|
198 |
demo = gr.ChatInterface(
|
199 |
fn=generate,
|
200 |
additional_inputs=[
|
201 |
-
gr.Slider(label="Max new tokens", minimum=1, maximum=
|
202 |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
203 |
-
gr.Slider(label="Top-p
|
204 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
205 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
206 |
],
|
207 |
examples=[
|
208 |
-
["@tts1 Who is Nikola Tesla
|
209 |
-
["@image A futuristic cityscape at sunset"],
|
210 |
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
|
211 |
-
[
|
212 |
-
["A train travels 60 kilometers per hour.
|
213 |
-
["Write a Python function to check if a number is prime."],
|
214 |
-
["@tts2 What causes rainbows to form?"],
|
215 |
],
|
216 |
cache_examples=False,
|
217 |
-
|
218 |
-
description=DESCRIPTION,
|
219 |
-
css=css,
|
220 |
fill_height=True,
|
221 |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
222 |
stop_btn="Stop Generation",
|
|
|
6 |
import edge_tts
|
7 |
import asyncio
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
10 |
from transformers.image_utils import load_image
|
11 |
+
from huggingface_hub import InferenceClient
|
12 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Load text-only model and tokenizer
|
15 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
|
|
21 |
)
|
22 |
model.eval()
|
23 |
|
|
|
|
|
|
|
|
|
|
|
24 |
# Load multimodal (OCR) model and processor
|
25 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
26 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
|
|
30 |
torch_dtype=torch.float16
|
31 |
).to("cuda").eval()
|
32 |
|
33 |
+
TTS_VOICES = [
|
34 |
+
"en-US-JennyNeural", # @tts1
|
35 |
+
"en-US-GuyNeural", # @tts2
|
36 |
+
]
|
37 |
+
|
38 |
+
def image_gen(prompt):
|
39 |
+
"""Generate image using API"""
|
40 |
+
try:
|
41 |
+
client = InferenceClient("prithivMLmods/STABLE-HAMSTER")
|
42 |
+
return client.text_to_image(prompt)
|
43 |
+
except:
|
44 |
+
client_flux = InferenceClient("black-forest-labs/FLUX.1-schnell")
|
45 |
+
return client_flux.text_to_image(prompt)
|
46 |
|
47 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
48 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
|
|
50 |
await communicate.save(output_file)
|
51 |
return output_file
|
52 |
|
|
|
|
|
|
|
|
|
|
|
53 |
def clean_chat_history(chat_history):
|
54 |
+
return [msg for msg in chat_history if isinstance(msg, dict) and isinstance(msg.get("content"), str)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
@spaces.GPU
|
57 |
+
def generate(input_dict: dict, chat_history: list[dict], max_new_tokens=1024, temperature=0.6, top_p=0.9, top_k=50, repetition_penalty=1.2):
|
58 |
+
"""Generates chatbot responses with multimodal input, TTS, and image generation."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
text = input_dict["text"]
|
60 |
files = input_dict.get("files", [])
|
61 |
+
images = [load_image(file) for file in files] if files else []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
if text.startswith("@tts"):
|
64 |
+
voice_index = next((i for i in range(1, 3) if text.startswith(f"@tts{i}")), None)
|
65 |
+
if voice_index:
|
66 |
+
voice = TTS_VOICES[voice_index - 1]
|
67 |
+
text = text.replace(f"@tts{voice_index}", "").strip()
|
68 |
+
conversation = [{"role": "user", "content": text}]
|
69 |
+
else:
|
70 |
+
voice = None
|
71 |
+
elif text.startswith("@image"):
|
72 |
+
query = text.replace("@image", "").strip()
|
73 |
+
yield "Generating Image, Please wait..."
|
74 |
+
image = image_gen(query)
|
75 |
+
yield gr.Image(image)
|
76 |
else:
|
77 |
+
conversation = clean_chat_history(chat_history) + [{"role": "user", "content": text}]
|
78 |
+
if images:
|
79 |
+
messages = [{
|
80 |
+
"role": "user",
|
81 |
+
"content": [
|
82 |
+
*[{"type": "image", "image": img} for img in images],
|
83 |
+
{"type": "text", "text": text},
|
84 |
+
]
|
85 |
+
}]
|
86 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
87 |
+
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
88 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
89 |
+
thread = Thread(target=model_m.generate, kwargs={**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens})
|
90 |
+
thread.start()
|
91 |
+
buffer = ""
|
92 |
+
for new_text in streamer:
|
93 |
+
buffer += new_text.replace("<|im_end|>", "")
|
94 |
+
yield buffer
|
95 |
+
else:
|
96 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
97 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
98 |
+
thread = Thread(target=model.generate, kwargs={
|
99 |
+
"input_ids": input_ids,
|
100 |
+
"streamer": streamer,
|
101 |
+
"max_new_tokens": max_new_tokens,
|
102 |
+
"do_sample": True,
|
103 |
+
"top_p": top_p,
|
104 |
+
"top_k": top_k,
|
105 |
+
"temperature": temperature,
|
106 |
+
"num_beams": 1,
|
107 |
+
"repetition_penalty": repetition_penalty,
|
108 |
+
})
|
109 |
+
thread.start()
|
110 |
+
response = "".join([new_text for new_text in streamer])
|
111 |
+
yield response
|
112 |
+
if voice:
|
113 |
+
output_file = asyncio.run(text_to_speech(response, voice))
|
114 |
+
yield gr.Audio(output_file, autoplay=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
demo = gr.ChatInterface(
|
117 |
fn=generate,
|
118 |
additional_inputs=[
|
119 |
+
gr.Slider(label="Max new tokens", minimum=1, maximum=2048, step=1, value=1024),
|
120 |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
121 |
+
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
122 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
123 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
124 |
],
|
125 |
examples=[
|
126 |
+
["@tts1 Who is Nikola Tesla?"],
|
|
|
127 |
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
|
128 |
+
["@image futuristic city at sunset"],
|
129 |
+
["A train travels 60 kilometers per hour. How far will it travel in 5 hours?"],
|
|
|
|
|
130 |
],
|
131 |
cache_examples=False,
|
132 |
+
description="# QwQ Edge 💬",
|
|
|
|
|
133 |
fill_height=True,
|
134 |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
135 |
stop_btn="Stop Generation",
|