Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,386 Bytes
0c1b8f7 32d8e74 ea9ba29 32d8e74 48a6837 ef0f895 32d8e74 0ba4242 0c1b8f7 0ba4242 ef0f895 0ba4242 806d92e 0ba4242 ab6b5e5 761375e 0ba4242 47473ae 32d8e74 ef0f895 32d8e74 ef0f895 48a6837 ab6b5e5 7d0f94b 0ba4242 32d8e74 9118d80 32d8e74 ea9ba29 32d8e74 48a6837 32d8e74 0ba4242 32d8e74 7d0f94b 32d8e74 7d0f94b 32d8e74 7d0f94b 0ba4242 a29c2e7 32d8e74 0ba4242 be810f5 0ba4242 ab6b5e5 32d8e74 ea9ba29 32d8e74 ea9ba29 32d8e74 48a6837 ea9ba29 48a6837 bce38cc 0ba4242 ea9ba29 0ba4242 db9acad ef0f895 48a6837 32d8e74 0ba4242 7d0f94b 0ba4242 47473ae 0c1b8f7 56cff44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import os
import gradio as gr
import torch
import tempfile
import asyncio
import edge_tts
import spaces
from pydub import AudioSegment
from threading import Thread
from collections.abc import Iterator
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = """
# QwQ Tiny with Edge TTS (MP3 Output)
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
async def text_to_speech(text: str) -> str:
"""Converts text to speech using Edge TTS, converts WAV to MP3, and returns the MP3 file path."""
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_wav:
wav_path = tmp_wav.name
communicate = edge_tts.Communicate(text)
await communicate.save(wav_path)
# Convert WAV to MP3
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_mp3:
mp3_path = tmp_mp3.name
audio = AudioSegment.from_wav(wav_path)
audio.export(mp3_path, format="mp3")
os.remove(wav_path) # Delete the original WAV file
return mp3_path # Return the MP3 file path
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str] | str:
is_tts = message.strip().startswith("@tts")
is_text_only = message.strip().startswith("@text")
# Remove special tags
if is_tts:
message = message.replace("@tts", "").strip()
elif is_text_only:
message = message.replace("@text", "").strip()
conversation = [*chat_history, {"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
final_output = "".join(outputs)
# If TTS requested, generate speech and return audio file
if is_tts:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
audio_path = loop.run_until_complete(text_to_speech(final_output))
return audio_path
return final_output #
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
stop_btn=None,
examples=[
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
["@text What is AI?"],
["@tts Explain Newton's third law of motion."],
["@text Rewrite the following sentence in passive voice: 'The dog chased the cat.'"],
],
cache_examples=False,
type="messages",
description=DESCRIPTION,
fill_height=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch() |