Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,8 @@ from threading import Thread
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
import torch
|
|
|
|
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
8 |
|
9 |
DESCRIPTION = """
|
@@ -40,6 +42,14 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
40 |
model.eval()
|
41 |
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
@spaces.GPU
|
44 |
def generate(
|
45 |
message: str,
|
@@ -49,7 +59,11 @@ def generate(
|
|
49 |
top_p: float = 0.9,
|
50 |
top_k: int = 50,
|
51 |
repetition_penalty: float = 1.2,
|
52 |
-
)
|
|
|
|
|
|
|
|
|
53 |
conversation = [*chat_history, {"role": "user", "content": message}]
|
54 |
|
55 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
@@ -78,52 +92,31 @@ def generate(
|
|
78 |
outputs.append(text)
|
79 |
yield "".join(outputs)
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
demo = gr.ChatInterface(
|
83 |
fn=generate,
|
84 |
additional_inputs=[
|
85 |
-
gr.Slider(
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
91 |
-
),
|
92 |
-
gr.Slider(
|
93 |
-
label="Temperature",
|
94 |
-
minimum=0.1,
|
95 |
-
maximum=4.0,
|
96 |
-
step=0.1,
|
97 |
-
value=0.6,
|
98 |
-
),
|
99 |
-
gr.Slider(
|
100 |
-
label="Top-p (nucleus sampling)",
|
101 |
-
minimum=0.05,
|
102 |
-
maximum=1.0,
|
103 |
-
step=0.05,
|
104 |
-
value=0.9,
|
105 |
-
),
|
106 |
-
gr.Slider(
|
107 |
-
label="Top-k",
|
108 |
-
minimum=1,
|
109 |
-
maximum=1000,
|
110 |
-
step=1,
|
111 |
-
value=50,
|
112 |
-
),
|
113 |
-
gr.Slider(
|
114 |
-
label="Repetition penalty",
|
115 |
-
minimum=1.0,
|
116 |
-
maximum=2.0,
|
117 |
-
step=0.05,
|
118 |
-
value=1.2,
|
119 |
-
),
|
120 |
],
|
121 |
stop_btn=None,
|
122 |
examples=[
|
123 |
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
|
124 |
-
["Write a Python function to check if a number is prime.
|
125 |
["What causes rainbows to form?"],
|
126 |
["Rewrite the following sentence in passive voice: 'The dog chased the cat.'"],
|
|
|
127 |
],
|
128 |
cache_examples=False,
|
129 |
type="messages",
|
@@ -132,6 +125,5 @@ demo = gr.ChatInterface(
|
|
132 |
fill_height=True,
|
133 |
)
|
134 |
|
135 |
-
|
136 |
if __name__ == "__main__":
|
137 |
demo.queue(max_size=20).launch()
|
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
import torch
|
7 |
+
import edge_tts
|
8 |
+
import asyncio
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
10 |
|
11 |
DESCRIPTION = """
|
|
|
42 |
model.eval()
|
43 |
|
44 |
|
45 |
+
async def text_to_speech(text: str, output_file="output.mp3"):
|
46 |
+
"""Convert text to speech using Edge TTS and save as MP3"""
|
47 |
+
voice = "en-US-JennyNeural" # Change this to your preferred voice
|
48 |
+
communicate = edge_tts.Communicate(text, voice)
|
49 |
+
await communicate.save(output_file)
|
50 |
+
return output_file
|
51 |
+
|
52 |
+
|
53 |
@spaces.GPU
|
54 |
def generate(
|
55 |
message: str,
|
|
|
59 |
top_p: float = 0.9,
|
60 |
top_k: int = 50,
|
61 |
repetition_penalty: float = 1.2,
|
62 |
+
):
|
63 |
+
"""Generates chatbot response and handles TTS requests"""
|
64 |
+
is_tts = message.strip().lower().startswith("@tts")
|
65 |
+
message = message.replace("@tts", "").strip()
|
66 |
+
|
67 |
conversation = [*chat_history, {"role": "user", "content": message}]
|
68 |
|
69 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
|
|
92 |
outputs.append(text)
|
93 |
yield "".join(outputs)
|
94 |
|
95 |
+
final_response = "".join(outputs)
|
96 |
+
|
97 |
+
if is_tts:
|
98 |
+
output_file = asyncio.run(text_to_speech(final_response))
|
99 |
+
return output_file # Return MP3 file
|
100 |
+
|
101 |
+
return final_response # Return text response
|
102 |
+
|
103 |
|
104 |
demo = gr.ChatInterface(
|
105 |
fn=generate,
|
106 |
additional_inputs=[
|
107 |
+
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
108 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
109 |
+
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
110 |
+
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
111 |
+
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
],
|
113 |
stop_btn=None,
|
114 |
examples=[
|
115 |
["A train travels 60 kilometers per hour. If it travels for 5 hours, how far will it travel in total?"],
|
116 |
+
["Write a Python function to check if a number is prime."],
|
117 |
["What causes rainbows to form?"],
|
118 |
["Rewrite the following sentence in passive voice: 'The dog chased the cat.'"],
|
119 |
+
["@tts What is the capital of France?"],
|
120 |
],
|
121 |
cache_examples=False,
|
122 |
type="messages",
|
|
|
125 |
fill_height=True,
|
126 |
)
|
127 |
|
|
|
128 |
if __name__ == "__main__":
|
129 |
demo.queue(max_size=20).launch()
|