Spaces:
Sleeping
Sleeping
import copy | |
import logging | |
import numpy as np | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from torch.utils.data import DataLoader | |
from models.foster import FOSTER | |
from utils.toolkit import count_parameters, tensor2numpy, accuracy | |
from utils.inc_net import IncrementalNet | |
from scipy.spatial.distance import cdist | |
from models.base import BaseLearner | |
from models.icarl import iCaRL | |
from tqdm import tqdm | |
import torch.optim as optim | |
EPSILON = 1e-8 | |
batch_size = 32 | |
weight_decay = 2e-4 | |
num_workers = 8 | |
class RMMBase(BaseLearner): | |
def __init__(self, args): | |
self._args = args | |
self._m_rate_list = args.get("m_rate_list", []) | |
self._c_rate_list = args.get("c_rate_list", []) | |
def samples_per_class(self): | |
return int(self.memory_size // self._total_classes) | |
def memory_size(self): | |
if self._args["dataset"] == "cifar100": | |
img_per_cls = 500 | |
else: | |
img_per_cls = 1300 | |
if self._m_rate_list[self._cur_task] != 0: | |
print(self._total_classes) | |
self._memory_size = min(int(self._total_classes*img_per_cls-1),self._args["memory_size"] + int( | |
self._m_rate_list[self._cur_task] | |
* self._args["increment"] | |
* img_per_cls | |
)) | |
return self._memory_size | |
def new_memory_size(self): | |
if self._args["dataset"] == "cifar100": | |
img_per_cls = 500 | |
else: | |
img_per_cls = 1300 | |
return int( | |
(1 - self._m_rate_list[self._cur_task]) | |
* self._args["increment"] | |
* img_per_cls | |
) | |
def build_rehearsal_memory(self, data_manager, per_class): | |
self._reduce_exemplar(data_manager, per_class) | |
self._construct_exemplar(data_manager, per_class) | |
def _construct_exemplar(self, data_manager, m): | |
if self._args["dataset"] == "cifar100": | |
img_per_cls = 500 | |
else: | |
img_per_cls = 1300 | |
ns = [ | |
min(img_per_cls,int(m * (1 - self._c_rate_list[self._cur_task]))), | |
min(img_per_cls,int(m * (1 + self._c_rate_list[self._cur_task]))), | |
] | |
logging.info( | |
"Constructing exemplars...({} or {} per classes)".format(ns[0], ns[1]) | |
) | |
all_cls_entropies = [] | |
ms = [] | |
for class_idx in range(self._known_classes, self._total_classes): | |
data, targets, idx_dataset = data_manager.get_dataset( | |
np.arange(class_idx, class_idx + 1), | |
source="train", | |
mode="test", | |
ret_data=True, | |
) | |
idx_loader = DataLoader( | |
idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4 | |
) | |
with torch.no_grad(): | |
cidx_cls_entropies = [] | |
for idx, (_, inputs, targets) in enumerate(idx_loader): | |
inputs, targets = inputs.to(self._device), targets.to(self._device) | |
logits = self._network(inputs)["logits"] | |
cross_entropy = ( | |
F.cross_entropy(logits, targets, reduction="none") | |
.detach() | |
.cpu() | |
.numpy() | |
) | |
cidx_cls_entropies.append(cross_entropy) | |
# print(cidx_cls_entropies) | |
cidx_cls_entropies = np.mean(np.concatenate(cidx_cls_entropies)) | |
all_cls_entropies.append(cidx_cls_entropies) | |
entropy_median = np.median(all_cls_entropies) | |
for the_entropy in all_cls_entropies: | |
if the_entropy > entropy_median: | |
ms.append(ns[0]) | |
else: | |
ms.append(ns[1]) | |
logging.info(f"ms: {ms}") | |
for class_idx in range(self._known_classes, self._total_classes): | |
data, targets, idx_dataset = data_manager.get_dataset( | |
np.arange(class_idx, class_idx + 1), | |
source="train", | |
mode="test", | |
ret_data=True, | |
) | |
idx_loader = DataLoader( | |
idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4 | |
) | |
vectors, _ = self._extract_vectors(idx_loader) | |
vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T | |
class_mean = np.mean(vectors, axis=0) | |
# Select | |
selected_exemplars = [] | |
exemplar_vectors = [] # [n, feature_dim] | |
for k in range(1, ms[class_idx - self._known_classes] + 1): | |
S = np.sum( | |
exemplar_vectors, axis=0 | |
) # [feature_dim] sum of selected exemplars vectors | |
mu_p = (vectors + S) / k # [n, feature_dim] sum to all vectors | |
i = np.argmin(np.sqrt(np.sum((class_mean - mu_p) ** 2, axis=1))) | |
selected_exemplars.append( | |
np.array(data[i]) | |
) # New object to avoid passing by inference | |
exemplar_vectors.append( | |
np.array(vectors[i]) | |
) # New object to avoid passing by inference | |
vectors = np.delete( | |
vectors, i, axis=0 | |
) # Remove it to avoid duplicative selection | |
data = np.delete( | |
data, i, axis=0 | |
) # Remove it to avoid duplicative selection | |
selected_exemplars = np.array(selected_exemplars) | |
exemplar_targets = np.full(ms[class_idx - self._known_classes], class_idx) | |
self._data_memory = ( | |
np.concatenate((self._data_memory, selected_exemplars)) | |
if len(self._data_memory) != 0 | |
else selected_exemplars | |
) | |
self._targets_memory = ( | |
np.concatenate((self._targets_memory, exemplar_targets)) | |
if len(self._targets_memory) != 0 | |
else exemplar_targets | |
) | |
# Exemplar mean | |
idx_dataset = data_manager.get_dataset( | |
[], | |
source="train", | |
mode="test", | |
appendent=(selected_exemplars, exemplar_targets), | |
) | |
idx_loader = DataLoader( | |
idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4 | |
) | |
vectors, _ = self._extract_vectors(idx_loader) | |
vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T | |
mean = np.mean(vectors, axis=0) | |
mean = mean / np.linalg.norm(mean) | |
self._class_means[class_idx, :] = mean | |
class RMM_iCaRL( | |
RMMBase, iCaRL | |
): # RMM Base is supposed to be prior to the orginal method. | |
def __init__(self, args): | |
RMMBase.__init__(self, args) | |
iCaRL.__init__(self, args) | |
def incremental_train(self, data_manager): | |
self._cur_task += 1 | |
self._total_classes = self._known_classes + data_manager.get_task_size( | |
self._cur_task | |
) | |
self._network.update_fc(self._total_classes) | |
logging.info( | |
"Learning on {}-{}".format(self._known_classes, self._total_classes) | |
) | |
train_dataset = data_manager.get_dataset( | |
np.arange(self._known_classes, self._total_classes), | |
source="train", | |
mode="train", | |
appendent=self._get_memory(), | |
m_rate=self._m_rate_list[self._cur_task] if self._cur_task > 0 else None, | |
) | |
self.train_loader = DataLoader( | |
train_dataset, | |
batch_size=batch_size, | |
shuffle=True, | |
num_workers=num_workers, | |
pin_memory=True, | |
) | |
test_dataset = data_manager.get_dataset( | |
np.arange(0, self._total_classes), source="test", mode="test" | |
) | |
self.test_loader = DataLoader( | |
test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers | |
) | |
if len(self._multiple_gpus) > 1: | |
self._network = nn.DataParallel(self._network, self._multiple_gpus) | |
self._train(self.train_loader, self.test_loader) | |
self.build_rehearsal_memory(data_manager, self.samples_per_class) | |
if len(self._multiple_gpus) > 1: | |
self._network = self._network.module | |
class RMM_FOSTER(RMMBase, FOSTER): | |
def __init__(self, args): | |
RMMBase.__init__(self, args) | |
FOSTER.__init__(self, args) | |
def incremental_train(self, data_manager): | |
self.data_manager = data_manager | |
self._cur_task += 1 | |
if self._cur_task > 1: | |
self._network = self._snet | |
self._total_classes = self._known_classes + data_manager.get_task_size( | |
self._cur_task | |
) | |
self._network.update_fc(self._total_classes) | |
self._network_module_ptr = self._network | |
logging.info( | |
"Learning on {}-{}".format(self._known_classes, self._total_classes) | |
) | |
if self._cur_task > 0: | |
for p in self._network.convnets[0].parameters(): | |
p.requires_grad = False | |
for p in self._network.oldfc.parameters(): | |
p.requires_grad = False | |
logging.info("All params: {}".format(count_parameters(self._network))) | |
logging.info( | |
"Trainable params: {}".format(count_parameters(self._network, True)) | |
) | |
train_dataset = data_manager.get_dataset( | |
np.arange(self._known_classes, self._total_classes), | |
source="train", | |
mode="train", | |
appendent=self._get_memory(), | |
m_rate=self._m_rate_list[self._cur_task] if self._cur_task > 0 else None, | |
) | |
self.train_loader = DataLoader( | |
train_dataset, | |
batch_size=self.args["batch_size"], | |
shuffle=True, | |
num_workers=self.args["num_workers"], | |
pin_memory=True, | |
) | |
test_dataset = data_manager.get_dataset( | |
np.arange(0, self._total_classes), source="test", mode="test" | |
) | |
self.test_loader = DataLoader( | |
test_dataset, | |
batch_size=self.args["batch_size"], | |
shuffle=False, | |
num_workers=self.args["num_workers"], | |
) | |
if len(self._multiple_gpus) > 1: | |
self._network = nn.DataParallel(self._network, self._multiple_gpus) | |
self._train(self.train_loader, self.test_loader) | |
self.build_rehearsal_memory(data_manager, self.samples_per_class) | |
if len(self._multiple_gpus) > 1: | |
self._network = self._network.module | |