Spaces:
Sleeping
Sleeping
File size: 10,718 Bytes
cb80c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import copy
import logging
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from models.foster import FOSTER
from utils.toolkit import count_parameters, tensor2numpy, accuracy
from utils.inc_net import IncrementalNet
from scipy.spatial.distance import cdist
from models.base import BaseLearner
from models.icarl import iCaRL
from tqdm import tqdm
import torch.optim as optim
EPSILON = 1e-8
batch_size = 32
weight_decay = 2e-4
num_workers = 8
class RMMBase(BaseLearner):
def __init__(self, args):
self._args = args
self._m_rate_list = args.get("m_rate_list", [])
self._c_rate_list = args.get("c_rate_list", [])
@property
def samples_per_class(self):
return int(self.memory_size // self._total_classes)
@property
def memory_size(self):
if self._args["dataset"] == "cifar100":
img_per_cls = 500
else:
img_per_cls = 1300
if self._m_rate_list[self._cur_task] != 0:
print(self._total_classes)
self._memory_size = min(int(self._total_classes*img_per_cls-1),self._args["memory_size"] + int(
self._m_rate_list[self._cur_task]
* self._args["increment"]
* img_per_cls
))
return self._memory_size
@property
def new_memory_size(self):
if self._args["dataset"] == "cifar100":
img_per_cls = 500
else:
img_per_cls = 1300
return int(
(1 - self._m_rate_list[self._cur_task])
* self._args["increment"]
* img_per_cls
)
def build_rehearsal_memory(self, data_manager, per_class):
self._reduce_exemplar(data_manager, per_class)
self._construct_exemplar(data_manager, per_class)
def _construct_exemplar(self, data_manager, m):
if self._args["dataset"] == "cifar100":
img_per_cls = 500
else:
img_per_cls = 1300
ns = [
min(img_per_cls,int(m * (1 - self._c_rate_list[self._cur_task]))),
min(img_per_cls,int(m * (1 + self._c_rate_list[self._cur_task]))),
]
logging.info(
"Constructing exemplars...({} or {} per classes)".format(ns[0], ns[1])
)
all_cls_entropies = []
ms = []
for class_idx in range(self._known_classes, self._total_classes):
data, targets, idx_dataset = data_manager.get_dataset(
np.arange(class_idx, class_idx + 1),
source="train",
mode="test",
ret_data=True,
)
idx_loader = DataLoader(
idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4
)
with torch.no_grad():
cidx_cls_entropies = []
for idx, (_, inputs, targets) in enumerate(idx_loader):
inputs, targets = inputs.to(self._device), targets.to(self._device)
logits = self._network(inputs)["logits"]
cross_entropy = (
F.cross_entropy(logits, targets, reduction="none")
.detach()
.cpu()
.numpy()
)
cidx_cls_entropies.append(cross_entropy)
# print(cidx_cls_entropies)
cidx_cls_entropies = np.mean(np.concatenate(cidx_cls_entropies))
all_cls_entropies.append(cidx_cls_entropies)
entropy_median = np.median(all_cls_entropies)
for the_entropy in all_cls_entropies:
if the_entropy > entropy_median:
ms.append(ns[0])
else:
ms.append(ns[1])
logging.info(f"ms: {ms}")
for class_idx in range(self._known_classes, self._total_classes):
data, targets, idx_dataset = data_manager.get_dataset(
np.arange(class_idx, class_idx + 1),
source="train",
mode="test",
ret_data=True,
)
idx_loader = DataLoader(
idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4
)
vectors, _ = self._extract_vectors(idx_loader)
vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T
class_mean = np.mean(vectors, axis=0)
# Select
selected_exemplars = []
exemplar_vectors = [] # [n, feature_dim]
for k in range(1, ms[class_idx - self._known_classes] + 1):
S = np.sum(
exemplar_vectors, axis=0
) # [feature_dim] sum of selected exemplars vectors
mu_p = (vectors + S) / k # [n, feature_dim] sum to all vectors
i = np.argmin(np.sqrt(np.sum((class_mean - mu_p) ** 2, axis=1)))
selected_exemplars.append(
np.array(data[i])
) # New object to avoid passing by inference
exemplar_vectors.append(
np.array(vectors[i])
) # New object to avoid passing by inference
vectors = np.delete(
vectors, i, axis=0
) # Remove it to avoid duplicative selection
data = np.delete(
data, i, axis=0
) # Remove it to avoid duplicative selection
selected_exemplars = np.array(selected_exemplars)
exemplar_targets = np.full(ms[class_idx - self._known_classes], class_idx)
self._data_memory = (
np.concatenate((self._data_memory, selected_exemplars))
if len(self._data_memory) != 0
else selected_exemplars
)
self._targets_memory = (
np.concatenate((self._targets_memory, exemplar_targets))
if len(self._targets_memory) != 0
else exemplar_targets
)
# Exemplar mean
idx_dataset = data_manager.get_dataset(
[],
source="train",
mode="test",
appendent=(selected_exemplars, exemplar_targets),
)
idx_loader = DataLoader(
idx_dataset, batch_size=batch_size, shuffle=False, num_workers=4
)
vectors, _ = self._extract_vectors(idx_loader)
vectors = (vectors.T / (np.linalg.norm(vectors.T, axis=0) + EPSILON)).T
mean = np.mean(vectors, axis=0)
mean = mean / np.linalg.norm(mean)
self._class_means[class_idx, :] = mean
class RMM_iCaRL(
RMMBase, iCaRL
): # RMM Base is supposed to be prior to the orginal method.
def __init__(self, args):
RMMBase.__init__(self, args)
iCaRL.__init__(self, args)
def incremental_train(self, data_manager):
self._cur_task += 1
self._total_classes = self._known_classes + data_manager.get_task_size(
self._cur_task
)
self._network.update_fc(self._total_classes)
logging.info(
"Learning on {}-{}".format(self._known_classes, self._total_classes)
)
train_dataset = data_manager.get_dataset(
np.arange(self._known_classes, self._total_classes),
source="train",
mode="train",
appendent=self._get_memory(),
m_rate=self._m_rate_list[self._cur_task] if self._cur_task > 0 else None,
)
self.train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
)
test_dataset = data_manager.get_dataset(
np.arange(0, self._total_classes), source="test", mode="test"
)
self.test_loader = DataLoader(
test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers
)
if len(self._multiple_gpus) > 1:
self._network = nn.DataParallel(self._network, self._multiple_gpus)
self._train(self.train_loader, self.test_loader)
self.build_rehearsal_memory(data_manager, self.samples_per_class)
if len(self._multiple_gpus) > 1:
self._network = self._network.module
class RMM_FOSTER(RMMBase, FOSTER):
def __init__(self, args):
RMMBase.__init__(self, args)
FOSTER.__init__(self, args)
def incremental_train(self, data_manager):
self.data_manager = data_manager
self._cur_task += 1
if self._cur_task > 1:
self._network = self._snet
self._total_classes = self._known_classes + data_manager.get_task_size(
self._cur_task
)
self._network.update_fc(self._total_classes)
self._network_module_ptr = self._network
logging.info(
"Learning on {}-{}".format(self._known_classes, self._total_classes)
)
if self._cur_task > 0:
for p in self._network.convnets[0].parameters():
p.requires_grad = False
for p in self._network.oldfc.parameters():
p.requires_grad = False
logging.info("All params: {}".format(count_parameters(self._network)))
logging.info(
"Trainable params: {}".format(count_parameters(self._network, True))
)
train_dataset = data_manager.get_dataset(
np.arange(self._known_classes, self._total_classes),
source="train",
mode="train",
appendent=self._get_memory(),
m_rate=self._m_rate_list[self._cur_task] if self._cur_task > 0 else None,
)
self.train_loader = DataLoader(
train_dataset,
batch_size=self.args["batch_size"],
shuffle=True,
num_workers=self.args["num_workers"],
pin_memory=True,
)
test_dataset = data_manager.get_dataset(
np.arange(0, self._total_classes), source="test", mode="test"
)
self.test_loader = DataLoader(
test_dataset,
batch_size=self.args["batch_size"],
shuffle=False,
num_workers=self.args["num_workers"],
)
if len(self._multiple_gpus) > 1:
self._network = nn.DataParallel(self._network, self._multiple_gpus)
self._train(self.train_loader, self.test_loader)
self.build_rehearsal_memory(data_manager, self.samples_per_class)
if len(self._multiple_gpus) > 1:
self._network = self._network.module
|