File size: 25,917 Bytes
25a63b5 d1b265f f9a8132 f9f7e1c 3b96ce2 16ca108 3b96ce2 ebac442 d1b265f f9a8132 ebac442 3b96ce2 e84fe7d f9a8132 c458985 6b501f6 230ba50 2e504c0 6b501f6 2e504c0 975c60a 2e504c0 f92effe 975c60a 2e504c0 975c60a 2e504c0 975c60a 2e504c0 87dd6c1 42d91b3 f9a8132 16ca108 ebac442 16ca108 975c60a 6b501f6 975c60a 2e504c0 3b96ce2 2e504c0 6b501f6 2e504c0 1fd21ae c458985 975c60a 6b501f6 975c60a c458985 3b96ce2 c458985 3b96ce2 c458985 3b96ce2 f9a8132 3b96ce2 f9a8132 16ca108 6749d1f cf4c3a5 6b501f6 c458985 e9e83fc ebac442 e9e83fc 975c60a e9e83fc c458985 e9e83fc ebac442 6b501f6 ebac442 6b501f6 e9e83fc c458985 c38370d 6c60301 ebac442 6c60301 437bcb0 e9e83fc 2e504c0 e9e83fc 2e504c0 6b501f6 2e504c0 6b501f6 2e504c0 6b501f6 2e504c0 6b501f6 2e504c0 6b501f6 2e504c0 e9e83fc 6749d1f cf4c3a5 e9e83fc cf4c3a5 f9f7e1c 6b501f6 ebac442 e9e83fc 6b501f6 975c60a 6b501f6 e9e83fc 6b501f6 e9e83fc f9f7e1c 2e504c0 6749d1f ebac442 e9e83fc 975c60a e9e83fc 6749d1f ebac442 2e504c0 6749d1f 16ca108 f9f7e1c 2e504c0 ebac442 2e504c0 6b501f6 2e504c0 16ca108 3b96ce2 6b501f6 ebac442 87dd6c1 ebac442 87dd6c1 e84fe7d ebac442 e84fe7d 46e9809 975c60a 16ca108 6b501f6 2e504c0 6b501f6 2e504c0 ebac442 2e504c0 6b501f6 ebac442 6b501f6 ebac442 6b501f6 2e504c0 16ca108 2e504c0 16ca108 2e504c0 6b501f6 c458985 2e504c0 c458985 16ca108 2e504c0 16ca108 e84fe7d 16ca108 ebac442 c458985 d79221a 16ca108 0b36f6e 642143a 2e504c0 642143a 0b36f6e 642143a 0b36f6e 642143a 0b36f6e 642143a e84fe7d 642143a e84fe7d 685722d cf4c3a5 16ca108 d79221a 16ca108 0b36f6e f9f7e1c cf4c3a5 2e504c0 cf4c3a5 2e504c0 6b501f6 2e504c0 6b501f6 f92effe 2e504c0 6b501f6 2e504c0 f92effe 685722d f92effe 685722d f92effe 2e504c0 f92effe 2e504c0 f92effe ebac442 f92effe ebac442 f92effe ebac442 2e504c0 6b501f6 f92effe 2e504c0 f92effe 2e504c0 f92effe ebac442 f92effe 2e504c0 cf4c3a5 2e504c0 d1b265f cf4c3a5 c458985 cf4c3a5 e84fe7d ebac442 3b96ce2 6b501f6 e9e83fc ebac442 975c60a e9e83fc ebac442 e9e83fc 975c60a e9e83fc 685722d e9e83fc 2e504c0 ebac442 e9e83fc ebac442 e9e83fc 975c60a 2e504c0 975c60a 6b501f6 975c60a 6b501f6 2e504c0 975c60a 2e504c0 975c60a e9e83fc 2e504c0 ebac442 e9e83fc ebac442 e9e83fc 975c60a e9e83fc 2e504c0 ebac442 e9e83fc ebac442 e9e83fc 975c60a 2e504c0 975c60a e9e83fc 2e504c0 ebac442 e9e83fc ebac442 e9e83fc ebac442 6749d1f 6b501f6 2e504c0 c458985 2e504c0 c458985 685722d 3b96ce2 ebac442 3b96ce2 e9e83fc 3b96ce2 6b501f6 3b96ce2 33c8e0b 1fd21ae 2e504c0 6b501f6 f92effe 685722d 726e8be f92effe 4848b3d f92effe 2e504c0 c458985 6b501f6 f92effe 2e504c0 f92effe 2e504c0 3b96ce2 67c356a ebac442 87dd6c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
import pickle
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
######################################
# 1) LOAD DATA & MODELS
######################################
# Load your dataset
df = pd.read_csv("X_train_test_combined_dataset_Filtered_dataset.csv")
# Ensure 'YMDESUD5ANYO' exists in your DataFrame
if 'YMDESUD5ANYO' not in df.columns:
raise ValueError("The column 'YMDESUD5ANYO' is missing from the dataset. Please check your CSV file.")
# List of model filenames
model_filenames = [
"YOWRCONC.pkl", "YOSEEDOC.pkl", "YO_MDEA5.pkl", "YOWRLSIN.pkl",
"YODPPROB.pkl", "YOWRPROB.pkl", "YODPR2WK.pkl", "YOWRDEPR.pkl",
"YODPDISC.pkl", "YOLOSEV.pkl", "YOWRDCSN.pkl", "YODSMMDE.pkl",
"YO_MDEA3.pkl", "YODPLSIN.pkl", "YOWRELES.pkl", "YOPB2WK.pkl"
]
model_path = "models/"
######################################
# 2) MODEL PREDICTOR
######################################
class ModelPredictor:
def __init__(self, model_path, model_filenames):
self.model_path = model_path
self.model_filenames = model_filenames
self.models = self.load_models()
# Mapping each label (column) to textual meaning for 0/1
self.prediction_map = {
"YOWRCONC": ["Did NOT have difficulty concentrating", "Had difficulty concentrating"],
"YOSEEDOC": ["Did NOT feel the need to see a doctor", "Felt the need to see a doctor"],
"YO_MDEA5": ["No restlessness/lethargy noticed", "Others noticed restlessness/lethargy"],
"YOWRLSIN": ["Did NOT feel bored/lose interest", "Felt bored/lost interest"],
"YODPPROB": ["No other problems for 2+ weeks", "Had other problems for 2+ weeks"],
"YOWRPROB": ["No 'worst time ever' feeling", "Had 'worst time ever' feeling"],
"YODPR2WK": ["No depressed feelings for 2+ wks", "Had depressed feelings for 2+ wks"],
"YOWRDEPR": ["Did NOT feel sad/depressed daily", "Felt sad/depressed mostly everyday"],
"YODPDISC": ["Overall mood not sad/depressed", "Overall mood was sad/depressed"],
"YOLOSEV": ["Did NOT lose interest in things", "Lost interest in enjoyable things"],
"YOWRDCSN": ["Was able to make decisions", "Was unable to make decisions"],
"YODSMMDE": ["No 2+ wks depression symptoms", "Had 2+ wks depression symptoms"],
"YO_MDEA3": ["No appetite/weight changes", "Had changes in appetite/weight"],
"YODPLSIN": ["Never lost interest/felt bored", "Lost interest/felt bored"],
"YOWRELES": ["Did NOT eat less than usual", "Ate less than usual"],
"YOPB2WK": ["No uneasy feelings 2+ weeks", "Uneasy feelings 2+ weeks"]
}
def load_models(self):
loaded = []
for fname in self.model_filenames:
try:
with open(self.model_path + fname, "rb") as f:
model = pickle.load(f)
loaded.append(model)
except FileNotFoundError:
raise FileNotFoundError(f"Model file '{fname}' not found in path '{self.model_path}'.")
except Exception as e:
raise Exception(f"Error loading model '{fname}': {e}")
return loaded
def make_predictions(self, user_input: pd.DataFrame):
"""
Return:
- A list of np.array [0/1], one for each model
- A list of np.array [prob_of_1], if predict_proba is available, else np.nan
"""
preds = []
probs = []
for model in self.models:
y_pred = model.predict(user_input)
preds.append(y_pred.flatten())
if hasattr(model, "predict_proba"):
y_prob = model.predict_proba(user_input)[:, 1] # Probability that label=1
probs.append(y_prob)
else:
probs.append(np.full(len(user_input), np.nan))
return preds, probs
def evaluate_severity(self, count_ones: int) -> str:
"""
Evaluate severity based on total # of '1' predictions across all labels.
"""
if count_ones >= 13:
return "Mental Health Severity: Severe"
elif count_ones >= 9:
return "Mental Health Severity: Moderate"
elif count_ones >= 5:
return "Mental Health Severity: Low"
else:
return "Mental Health Severity: Very Low"
predictor = ModelPredictor(model_path, model_filenames)
######################################
# 3) FEATURE CATEGORIES + MAPPING
######################################
categories_dict = {
"1. Depression & Substance Use Diagnosis": [
"YMDESUD5ANYO", "YMDELT", "YMDEYR", "YMDERSUD5ANY",
"YMSUD5YANY", "YMIUD5YANY", "YMIMS5YANY", "YMIMI5YANY"
],
"2. Mental Health Treatment & Prof Consultation": [
"YMDEHPO", "YMDETXRX", "YMDEHARX", "YMDEHPRX", "YRXMDEYR",
"YHLTMDE", "YTXMDEYR", "YDOCMDE", "YPSY2MDE", "YPSY1MDE", "YCOUNMDE"
],
"3. Functional & Cognitive Impairment": [
"MDEIMPY", "LVLDIFMEM2"
],
"4. Suicidal Thoughts & Behaviors": [
"YUSUITHK", "YUSUITHKYR", "YUSUIPLNYR", "YUSUIPLN"
]
}
input_mapping = {
'YMDESUD5ANYO': {
"SUD only, no MDE": 1,
"MDE only, no SUD": 2,
"SUD and MDE": 3,
"Neither SUD or MDE": 4
},
'YMDELT': {"Yes": 1, "No": 2},
'YMDEYR': {"Yes": 1, "No": 2},
'YMDERSUD5ANY': {"Yes": 1, "No": 0},
'YMSUD5YANY': {"Yes": 1, "No": 0},
'YMIUD5YANY': {"Yes": 1, "No": 0},
'YMIMS5YANY': {"Yes": 1, "No": 0},
'YMIMI5YANY': {"Yes": 1, "No": 0},
'YMDEHPO': {"Yes": 1, "No": 0},
'YMDETXRX': {"Yes": 1, "No": 0},
'YMDEHARX': {"Yes": 1, "No": 0},
'YMDEHPRX': {"Yes": 1, "No": 0},
'YRXMDEYR': {"Yes": 1, "No": 0},
'YHLTMDE': {"Yes": 1, "No": 0},
'YTXMDEYR': {"Yes": 1, "No": 0},
'YDOCMDE': {"Yes": 1, "No": 0},
'YPSY2MDE': {"Yes": 1, "No": 0},
'YPSY1MDE': {"Yes": 1, "No": 0},
'YCOUNMDE': {"Yes": 1, "No": 0},
'MDEIMPY': {"Yes": 1, "No": 2},
'LVLDIFMEM2': {
"No Difficulty": 1,
"Some difficulty": 2,
"A lot of difficulty or cannot do at all": 3
},
'YUSUITHK': {"Yes": 1, "No": 2, "I'm not sure": 3, "I don't want to answer": 4},
'YUSUITHKYR': {"Yes": 1, "No": 2, "I'm not sure": 3, "I don't want to answer": 4},
'YUSUIPLNYR': {"Yes": 1, "No": 2, "I'm not sure": 3, "I don't want to answer": 4},
'YUSUIPLN': {"Yes": 1, "No": 2, "I'm not sure": 3, "I don't want to answer": 4}
}
def validate_inputs(*args):
for arg in args:
if arg is None or arg == "":
return False
return True
######################################
# 4) NEAREST NEIGHBORS
######################################
def get_nearest_neighbors_info(user_input_df: pd.DataFrame, k=5):
user_cols = user_input_df.columns
if not all(col in df.columns for col in user_cols):
return "Cannot compute nearest neighbors. Some columns not found in df."
sub_df = df[list(user_cols)].copy()
diffs = sub_df - user_input_df.iloc[0]
dists = (diffs**2).sum(axis=1)**0.5
nn_indices = dists.nsmallest(k).index
neighbors = df.loc[nn_indices]
lines = [
f"**Nearest Neighbors (k={k})**",
f"Distances range: {dists[nn_indices].min():.2f} to {dists[nn_indices].max():.2f}",
""
]
# A) Show user input in numeric->text form
lines.append("**User Input (numeric -> text)**")
for col in user_cols:
val_numeric = user_input_df.iloc[0][col]
text_val = None
if col in input_mapping:
for txt_key, num_val in input_mapping[col].items():
if val_numeric == num_val:
text_val = txt_key
break
if not text_val:
text_val = f"{val_numeric} (no mapping found)"
lines.append(f"- {col} = {val_numeric} => '{text_val}'")
lines.append("")
# B) Show label columns among neighbors
label_cols = list(predictor.prediction_map.keys())
lines.append("**Label Distribution Among Neighbors**")
for lbl in label_cols:
if lbl not in neighbors.columns:
continue
val_counts = neighbors[lbl].value_counts().to_dict()
parts = []
for val_, count_ in val_counts.items():
if val_ in [0,1] and lbl in predictor.prediction_map:
label_text = predictor.prediction_map[lbl][val_]
parts.append(f"{count_} had '{label_text}'")
else:
parts.append(f"{count_} had numeric={val_}")
lines.append(f"- {lbl}: " + "; ".join(parts))
lines.append("")
return "\n".join(lines)
######################################
# 5) PREDICT FUNCTION
######################################
def predict(
# Category 1 (8):
YMDESUD5ANYO, YMDELT, YMDEYR, YMDERSUD5ANY,
YMSUD5YANY, YMIUD5YANY, YMIMS5YANY, YMIMI5YANY,
# Category 2 (11):
YMDEHPO, YMDETXRX, YMDEHARX, YMDEHPRX, YRXMDEYR,
YHLTMDE, YTXMDEYR, YDOCMDE, YPSY2MDE, YPSY1MDE, YCOUNMDE,
# Category 3 (2):
MDEIMPY, LVLDIFMEM2,
# Category 4 (4):
YUSUITHK, YUSUITHKYR, YUSUIPLNYR, YUSUIPLN
):
# 1) Validate
if not validate_inputs(
YMDESUD5ANYO, YMDELT, YMDEYR, YMDERSUD5ANY,
YMSUD5YANY, YMIUD5YANY, YMIMS5YANY, YMIMI5YANY,
YMDEHPO, YMDETXRX, YMDEHARX, YMDEHPRX, YRXMDEYR,
YHLTMDE, YTXMDEYR, YDOCMDE, YPSY2MDE, YPSY1MDE, YCOUNMDE,
MDEIMPY, LVLDIFMEM2,
YUSUITHK, YUSUITHKYR, YUSUIPLNYR, YUSUIPLN
):
return (
"Please select all required fields.", # 1) Prediction Results
"Validation Error", # 2) Severity
"No data", # 3) Total Count
"No nearest neighbors info", # 4) NN Summary
None, # 5) Bar chart (Input)
None # 6) Bar chart (Labels)
)
# 2) Convert text -> numeric
try:
user_input_dict = {
'YMDESUD5ANYO': input_mapping['YMDESUD5ANYO'][YMDESUD5ANYO],
'YMDELT': input_mapping['YMDELT'][YMDELT],
'YMDEYR': input_mapping['YMDEYR'][YMDEYR],
'YMDERSUD5ANY': input_mapping['YMDERSUD5ANY'][YMDERSUD5ANY],
'YMSUD5YANY': input_mapping['YMSUD5YANY'][YMSUD5YANY],
'YMIUD5YANY': input_mapping['YMIUD5YANY'][YMIUD5YANY],
'YMIMS5YANY': input_mapping['YMIMS5YANY'][YMIMS5YANY],
'YMIMI5YANY': input_mapping['YMIMI5YANY'][YMIMI5YANY],
'YMDEHPO': input_mapping['YMDEHPO'][YMDEHPO],
'YMDETXRX': input_mapping['YMDETXRX'][YMDETXRX],
'YMDEHARX': input_mapping['YMDEHARX'][YMDEHARX],
'YMDEHPRX': input_mapping['YMDEHPRX'][YMDEHPRX],
'YRXMDEYR': input_mapping['YRXMDEYR'][YRXMDEYR],
'YHLTMDE': input_mapping['YHLTMDE'][YHLTMDE],
'YTXMDEYR': input_mapping['YTXMDEYR'][YTXMDEYR],
'YDOCMDE': input_mapping['YDOCMDE'][YDOCMDE],
'YPSY2MDE': input_mapping['YPSY2MDE'][YPSY2MDE],
'YPSY1MDE': input_mapping['YPSY1MDE'][YPSY1MDE],
'YCOUNMDE': input_mapping['YCOUNMDE'][YCOUNMDE],
'MDEIMPY': input_mapping['MDEIMPY'][MDEIMPY],
'LVLDIFMEM2': input_mapping['LVLDIFMEM2'][LVLDIFMEM2],
'YUSUITHK': input_mapping['YUSUITHK'][YUSUITHK],
'YUSUITHKYR': input_mapping['YUSUITHKYR'][YUSUITHKYR],
'YUSUIPLNYR': input_mapping['YUSUIPLNYR'][YUSUIPLNYR],
'YUSUIPLN': input_mapping['YUSUIPLN'][YUSUIPLN]
}
except KeyError as e:
missing_key = e.args[0]
return (
f"Input mapping missing for key: {missing_key}. Please check your `input_mapping` dictionary.",
"Mapping Error",
"No data",
"No nearest neighbors info",
None,
None
)
user_df = pd.DataFrame(user_input_dict, index=[0])
# 3) Make predictions
try:
preds, probs = predictor.make_predictions(user_df)
except Exception as e:
return (
f"Error during prediction: {e}",
"Prediction Error",
"No data",
"No nearest neighbors info",
None,
None
)
# Flatten predictions for severity count
all_preds = np.concatenate(preds)
count_ones = np.sum(all_preds == 1)
severity_msg = predictor.evaluate_severity(count_ones)
# 4) Summarize predictions (with probabilities)
# Build label -> (pred_value, prob_value)
label_prediction_info = {}
for i, fname in enumerate(model_filenames):
lbl_col = fname.split('.')[0]
pred_val = preds[i][0]
prob_val = probs[i][0]
label_prediction_info[lbl_col] = (pred_val, prob_val)
# Group them by domain
domain_groups = {
"Concentration and Decision Making": ["YOWRCONC", "YOWRDCSN"],
"Sleep and Energy Levels": ["YO_MDEA5", "YOWRELES"],
"Mood and Emotional State": [
"YOWRLSIN", "YOWRDEPR", "YODPDISC", "YOLOSEV", "YODPLSIN"
],
"Appetite and Weight Changes": ["YO_MDEA3", "YOWRELES"],
"Duration and Severity of Depression Symptoms": [
"YODPPROB", "YOWRPROB", "YODPR2WK", "YODSMMDE", "YOPB2WK"
]
}
final_str_parts = []
for gname, lbls in domain_groups.items():
group_lines = []
for lbl in lbls:
if lbl in label_prediction_info:
pred_val, prob_val = label_prediction_info[lbl]
if lbl in predictor.prediction_map and pred_val in [0,1]:
text_pred = predictor.prediction_map[lbl][pred_val]
else:
text_pred = f"Prediction={pred_val}"
if not np.isnan(prob_val):
text_prob = f"(Prob= {prob_val:.2f})"
else:
text_prob = "(No probability available)"
group_lines.append(f"{lbl} => {text_pred} {text_prob}")
if group_lines:
final_str_parts.append(f"**{gname}**")
final_str_parts.append("\n".join(group_lines))
final_str_parts.append("") # Add an empty line for spacing
if final_str_parts:
final_str = "\n".join(final_str_parts)
else:
final_str = "No predictions made or no matching group columns."
# 5) Additional info
total_count_md = f"We have **{len(df)}** patients in the dataset."
# 6) Nearest Neighbors
nn_md = get_nearest_neighbors_info(user_df, k=5)
# 7) Bar chart for input features
input_counts = {}
for col, val_ in user_input_dict.items():
matched = len(df[df[col] == val_])
input_counts[col] = matched
bar_in_df = pd.DataFrame({
"Feature": list(input_counts.keys()),
"Count": list(input_counts.values())
})
fig_in = px.bar(
bar_in_df, x="Feature", y="Count",
title="Number of Patients with the Same Input Feature Values"
)
fig_in.update_layout(width=1200, height=400)
# 8) Bar chart for predicted labels (UPDATED)
label_df_list = []
for lbl_col, (pred_val, _) in label_prediction_info.items():
if lbl_col in df.columns:
# Count how many patients in df have the predicted value
predicted_count = len(df[df[lbl_col] == pred_val])
# Determine the "other" class (0 ↔ 1)
other_val = 1 - pred_val
other_count = len(df[df[lbl_col] == other_val])
label_df_list.append({
"Label": lbl_col,
"Class": f"Predicted_{pred_val}",
"Count": predicted_count
})
label_df_list.append({
"Label": lbl_col,
"Class": f"Opposite_{other_val}",
"Count": other_count
})
if label_df_list:
bar_lbl_df = pd.DataFrame(label_df_list)
fig_lbl = px.bar(
bar_lbl_df,
x="Label",
y="Count",
color="Class",
barmode="group",
title="Number of Patients with the Predicted vs. Opposite Label"
)
fig_lbl.update_layout(width=1200, height=400)
else:
fig_lbl = px.bar(title="No valid predicted labels to display.")
fig_lbl.update_layout(width=1200, height=400)
return (
final_str, # 1) Prediction Results
severity_msg, # 2) Mental Health Severity
total_count_md, # 3) Total Patient Count
nn_md, # 4) Nearest Neighbors Summary
fig_in, # 5) Bar Chart (input features)
fig_lbl # 6) Bar Chart (labels)
)
######################################
# 6) UNIFIED DISTRIBUTION/CO-OCCURRENCE
######################################
def combined_plot(feature_list, label_col):
"""
If user picks 1 feature => distribution plot.
If user picks 2 features => co-occurrence plot.
Otherwise => show error or empty plot.
This function also maps numeric codes to text using 'input_mapping'
and 'predictor.prediction_map' so that the plots display more readable labels.
"""
if not label_col:
return px.bar(title="Please select a label column.")
# Make a copy of your dataset
df_copy = df.copy()
# A) Convert numeric codes -> text for each feature in `input_mapping`
for col, text_to_num_dict in input_mapping.items():
if col in df_copy.columns:
# Reverse mapping: "Yes"->1 becomes 1->"Yes"
num_to_text = {v: k for k, v in text_to_num_dict.items()}
df_copy[col] = df_copy[col].map(num_to_text).fillna(df_copy[col])
# B) Convert label 0/1 to text in df_copy if label_col is in predictor.prediction_map
if label_col in predictor.prediction_map and label_col in df_copy.columns:
zero_text, one_text = predictor.prediction_map[label_col]
label_map = {0: zero_text, 1: one_text}
df_copy[label_col] = df_copy[label_col].map(label_map).fillna(df_copy[label_col])
# Now proceed with the plotting
if len(feature_list) == 1:
f_ = feature_list[0]
if f_ not in df_copy.columns or label_col not in df_copy.columns:
return px.bar(title="Selected columns not found in the dataset.")
grouped = df_copy.groupby([f_, label_col]).size().reset_index(name="count")
fig = px.bar(
grouped,
x=f_,
y="count",
color=label_col,
title=f"Distribution of {f_} vs {label_col} (Text Mapped)"
)
fig.update_layout(width=1200, height=600)
return fig
elif len(feature_list) == 2:
f1, f2 = feature_list
if (f1 not in df_copy.columns) or (f2 not in df_copy.columns) or (label_col not in df_copy.columns):
return px.bar(title="Selected columns not found in the dataset.")
grouped = df_copy.groupby([f1, f2, label_col]).size().reset_index(name="count")
fig = px.bar(
grouped,
x=f1,
y="count",
color=label_col,
facet_col=f2,
title=f"Co-occurrence: {f1}, {f2} vs {label_col} (Text Mapped)"
)
fig.update_layout(width=1200, height=600)
return fig
else:
return px.bar(title="Please select exactly 1 or 2 features.")
######################################
# 7) BUILD GRADIO UI
######################################
with gr.Blocks(css=".gradio-container {max-width: 1200px;}") as demo:
# ======== TAB 1: Prediction ========
with gr.Tab("Prediction"):
gr.Markdown("### Please provide inputs in each of the four categories below. All fields are required.")
# Category 1: Depression & Substance Use Diagnosis (8 features)
gr.Markdown("#### 1. Depression & Substance Use Diagnosis")
cat1_col_labels = [
("YMDESUD5ANYO", "YMDESUD5ANYO: ONLY MDE, ONLY SUD, BOTH, OR NEITHER"),
("YMDELT", "YMDELT: Had major depressive episode in lifetime"),
("YMDEYR", "YMDEYR: Past-year major depressive episode"),
("YMDERSUD5ANY", "YMDERSUD5ANY: MDE or SUD in past year?"),
("YMSUD5YANY", "YMSUD5YANY: Past-year MDE & substance use disorder"),
("YMIUD5YANY", "YMIUD5YANY: Past-year MDE & illicit drug use disorder"),
("YMIMS5YANY", "YMIMS5YANY: Past-year MDE + severe impairment + substance use"),
("YMIMI5YANY", "YMIMI5YANY: Past-year MDE w/ severe impairment & illicit drug use")
]
cat1_inputs = []
for col, label_text in cat1_col_labels:
cat1_inputs.append(
gr.Dropdown(
choices=list(input_mapping[col].keys()),
label=label_text
)
)
# Category 2: Mental Health Treatment & Professional Consultation (11 features)
gr.Markdown("#### 2. Mental Health Treatment & Professional Consultation")
cat2_col_labels = [
("YMDEHPO", "YMDEHPO: Saw health prof only for MDE"),
("YMDETXRX", "YMDETXRX: Received treatment/counseling if saw doc/prof for MDE"),
("YMDEHARX", "YMDEHARX: Saw health prof & medication for MDE"),
("YMDEHPRX", "YMDEHPRX: Saw health prof or med for MDE in past year?"),
("YRXMDEYR", "YRXMDEYR: Used medication for MDE in past years"),
("YHLTMDE", "YHLTMDE: Saw/talked to health prof about MDE"),
("YTXMDEYR", "YTXMDEYR: Saw/talked to doc/prof for MDE in past year"),
("YDOCMDE", "YDOCMDE: Saw/talked to general practitioner/family MD"),
("YPSY2MDE", "YPSY2MDE: Saw/talked to psychiatrist"),
("YPSY1MDE", "YPSY1MDE: Saw/talked to psychologist"),
("YCOUNMDE", "YCOUNMDE: Saw/talked to counselor")
]
cat2_inputs = []
for col, label_text in cat2_col_labels:
cat2_inputs.append(
gr.Dropdown(
choices=list(input_mapping[col].keys()),
label=label_text
)
)
# Category 3: Functional & Cognitive Impairment (2 features)
gr.Markdown("#### 3. Functional & Cognitive Impairment")
cat3_col_labels = [
("MDEIMPY", "MDEIMPY: MDE with severe role impairment?"),
("LVLDIFMEM2", "LVLDIFMEM2: Difficulty remembering/concentrating")
]
cat3_inputs = []
for col, label_text in cat3_col_labels:
cat3_inputs.append(
gr.Dropdown(
choices=list(input_mapping[col].keys()),
label=label_text
)
)
# Category 4: Suicidal Thoughts & Behaviors (4 features)
gr.Markdown("#### 4. Suicidal Thoughts & Behaviors")
cat4_col_labels = [
("YUSUITHK", "YUSUITHK: Thought of killing self (past 12 months)?"),
("YUSUITHKYR", "YUSUITHKYR: Seriously thought about killing self?"),
("YUSUIPLNYR", "YUSUIPLNYR: Made plans to kill self in past year?"),
("YUSUIPLN", "YUSUIPLN: Made plans to kill yourself in past 12 months?")
]
cat4_inputs = []
for col, label_text in cat4_col_labels:
cat4_inputs.append(
gr.Dropdown(
choices=list(input_mapping[col].keys()),
label=label_text
)
)
# Combine all inputs in the correct order
all_inputs = cat1_inputs + cat2_inputs + cat3_inputs + cat4_inputs
# Output components
predict_btn = gr.Button("Predict")
out_pred_res = gr.Textbox(label="Prediction Results (with Probability)", lines=8)
out_sev = gr.Textbox(label="Mental Health Severity", lines=2)
out_count = gr.Markdown(label="Total Patient Count")
out_nn = gr.Markdown(label="Nearest Neighbors Summary")
out_bar_input= gr.Plot(label="Input Feature Counts")
out_bar_label= gr.Plot(label="Predicted Label Counts")
# Connect the predict button to the predict function
predict_btn.click(
fn=predict,
inputs=all_inputs,
outputs=[
out_pred_res,
out_sev,
out_count,
out_nn,
out_bar_input,
out_bar_label
]
)
# ======== TAB 2: Unified Distribution/Co-occurrence ========
with gr.Tab("Distribution/Co-occurrence"):
gr.Markdown("### Select 1 or 2 features + 1 label to see a bar chart.")
# Show only your 25 input features
list_of_features = sorted(input_mapping.keys())
# Show all label columns from the predictor map
list_of_labels = sorted(predictor.prediction_map.keys())
selected_features = gr.CheckboxGroup(
choices=list_of_features,
label="Select 1 or 2 features"
)
label_dd = gr.Dropdown(
choices=list_of_labels,
label="Label Column (e.g., YOWRCONC, YOSEEDOC, etc.)"
)
generate_combined_btn = gr.Button("Generate Plot")
combined_output = gr.Plot()
generate_combined_btn.click(
fn=combined_plot,
inputs=[selected_features, label_dd],
outputs=combined_output
)
# Finally, launch the Gradio app
demo.launch()
|