Spaces:
Runtime error
Runtime error
print("NLTK") | |
import nltk | |
nltk.download('punkt') | |
import gradio as gr | |
import numpy as np | |
import whisper | |
import scipy.io.wavfile | |
#StyleTTS2 imports | |
import torch | |
torch.manual_seed(0) | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cudnn.deterministic = True | |
import random | |
random.seed(0) | |
np.random.seed(0) | |
# load packages | |
import yaml | |
from munch import Munch | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import torchaudio | |
import librosa | |
from nltk.tokenize import word_tokenize | |
from models import * | |
from utils import * | |
from text_utils import TextCleaner | |
textclenaer = TextCleaner() | |
import phonemizer | |
# Global values | |
sample_rate_value=24000 | |
original_voice_path = "ref_voice.wav" | |
to_mel = torchaudio.transforms.MelSpectrogram( | |
n_mels=80, n_fft=2048, win_length=1200, hop_length=300) | |
mean, std = -4, 4 | |
def length_to_mask(lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
def preprocess(wave): | |
wave_tensor = torch.from_numpy(wave).float() | |
mel_tensor = to_mel(wave_tensor) | |
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std | |
return mel_tensor | |
def compute_style(path): | |
wave, sr = librosa.load(path, sr=24000) | |
audio, index = librosa.effects.trim(wave, top_db=30) | |
if sr != 24000: | |
audio = librosa.resample(audio, sr, 24000) | |
mel_tensor = preprocess(audio).to(device) | |
with torch.no_grad(): | |
ref_s = model.style_encoder(mel_tensor.unsqueeze(1)) | |
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1)) | |
return torch.cat([ref_s, ref_p], dim=1) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# load phonemizer | |
#phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt'))) | |
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True) | |
config = yaml.safe_load(open("Models/LibriTTS/config.yml")) | |
# load pretrained ASR model | |
ASR_config = config.get('ASR_config', False) | |
ASR_path = config.get('ASR_path', False) | |
text_aligner = load_ASR_models(ASR_path, ASR_config) | |
# load pretrained F0 model | |
F0_path = config.get('F0_path', False) | |
pitch_extractor = load_F0_models(F0_path) | |
# load BERT model | |
from Utils.PLBERT.util import load_plbert | |
BERT_path = config.get('PLBERT_dir', False) | |
plbert = load_plbert(BERT_path) | |
model_params = recursive_munch(config['model_params']) | |
model = build_model(model_params, text_aligner, pitch_extractor, plbert) | |
_ = [model[key].eval() for key in model] | |
_ = [model[key].to(device) for key in model] | |
params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu') | |
params = params_whole['net'] | |
for key in model: | |
if key in params: | |
print('%s loaded' % key) | |
try: | |
model[key].load_state_dict(params[key]) | |
except: | |
from collections import OrderedDict | |
state_dict = params[key] | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
# load params | |
model[key].load_state_dict(new_state_dict, strict=False) | |
# except: | |
# _load(params[key], model[key]) | |
_ = [model[key].eval() for key in model] | |
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule | |
sampler = DiffusionSampler( | |
model.diffusion.diffusion, | |
sampler=ADPM2Sampler(), | |
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters | |
clamp=False | |
) | |
def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1): | |
text = text.strip() | |
ps = global_phonemizer.phonemize([text]) | |
#ps = phonemizer([text], lang='en_us') | |
ps = word_tokenize(ps[0]) | |
ps = ' '.join(ps) | |
tokens = textclenaer(ps) | |
tokens.insert(0, 0) | |
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) | |
with torch.no_grad(): | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) | |
text_mask = length_to_mask(input_lengths).to(device) | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device), | |
embedding=bert_dur, | |
embedding_scale=embedding_scale, | |
features=ref_s, # reference from the same speaker as the embedding | |
num_steps=diffusion_steps).squeeze(1) | |
s = s_pred[:, 128:] | |
ref = s_pred[:, :128] | |
ref = alpha * ref + (1 - alpha) * ref_s[:, :128] | |
s = beta * s + (1 - beta) * ref_s[:, 128:] | |
d = model.predictor.text_encoder(d_en, | |
s, input_lengths, text_mask) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1) | |
pred_dur = torch.round(duration.squeeze()).clamp(min=1) | |
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 | |
c_frame += int(pred_dur[i].data) | |
# encode prosody | |
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) | |
if model_params.decoder.type == "hifigan": | |
asr_new = torch.zeros_like(en) | |
asr_new[:, :, 0] = en[:, :, 0] | |
asr_new[:, :, 1:] = en[:, :, 0:-1] | |
en = asr_new | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) | |
if model_params.decoder.type == "hifigan": | |
asr_new = torch.zeros_like(asr) | |
asr_new[:, :, 0] = asr[:, :, 0] | |
asr_new[:, :, 1:] = asr[:, :, 0:-1] | |
asr = asr_new | |
out = model.decoder(asr, | |
F0_pred, N_pred, ref.squeeze().unsqueeze(0)) | |
return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later | |
def transcribe(audio): | |
transcribed_text = "" | |
try: | |
whisper_model = whisper.load_model("base") | |
result = whisper_model.transcribe(audio) | |
transcribed_text = result["text"] | |
except Exception as exc: | |
print(exc) | |
transcribed_text = "An error occured. Please try again." | |
print(transcribed_text) | |
# ref_s = compute_style(original_voice_path) # run locally | |
ref_s = compute_style(audio) # run on HF | |
wav = inference(transcribed_text, ref_s, alpha=0.1, beta=0.5, diffusion_steps=10, embedding_scale=1) | |
scaled = np.int16(wav / np.max(np.abs(wav)) * 32767) | |
return (sample_rate_value, scaled) | |
def record_speaker(audio): | |
sr, voice = audio | |
scaled = np.int16(voice / np.max(np.abs(voice)) * 32767) | |
scipy.io.wavfile.write(original_voice_path, sr, scaled) | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" # AccentCoach: Transform Any Accent into American Accent. | |
**This is an educational app designed to transform the speech of a non-native English speaker into a native American accent.** | |
**The tool aims to coach learners in <ins>accent reduction</ins> and pronunciation improvement. It performs much better on <ins>longer speech</ins>.** | |
**The code is based on style diffusion and adversarial training with LSLMs outlined in StyleTTS2 paper.** | |
**It is strongly advised to duplicate this space and run it on a powerful GPU. Inference time can be reduced to less than a second when utilizing an Nvidia 3090.** | |
""") | |
# with gr.Accordion("First-Time Users (Click Here):", open=False): | |
# gr.Markdown(""" | |
# **Record the reference voice:** Kindly capture your voice as you read the provided | |
# text. Please ensure that you have granted microphone access in your browser settings. | |
# > I must not fear. Fear is the mind-killer. Fear is the little-death that brings total obliteration. | |
# I will face my fear. I will permit it to pass over me and through me. And when it has gone past I | |
# will turn the inner eye to see its path. Where the fear has gone there will be nothing. Only I will remain. | |
# Ensure clarity in your pronunciation, as the quality of this recording | |
# significantly influences the future results. Once done please click "Save". | |
# If the quality of the native voice is not satisfactory, you can come back and | |
# re-record your voice here again. | |
# You can also upload your voice or someone else's voice. | |
# """) | |
# speaker_voice = gr.Audio(sources=["microphone", "upload"], format="wav", label="Record reference voice:",show_download_button="True") | |
# ref_btn = gr.Button("Save") | |
# ref_btn.click(record_speaker, inputs= speaker_voice, outputs=None) | |
with gr.Column(): | |
gr.Markdown(""" | |
*Initiate the recording process by selecting the **Record** button. Speak Clearly and ensure a noise-free environment.* | |
""") | |
inp = gr.Audio(sources=["microphone", "upload"], format="wav", type="filepath", | |
label="Original accent:",show_download_button="True") | |
gr.Markdown(""" | |
*Press the **Run** button to listen to your native accent:* | |
""") | |
out = gr.Audio(label="Native accent:", autoplay="True", show_download_button="True") | |
btn = gr.Button("Run") | |
btn.click(transcribe, inputs=inp, outputs=out) | |
gr.Examples( | |
examples=[ | |
["https://github.com/otioss/otioss.github.io/raw/main/assets/audio/Albert-Einstein.wav",], | |
["https://github.com/otioss/otioss.github.io/raw/main/assets/audio/Arnold-Schwarzenegger.wav" ,], | |
], | |
inputs=inp, | |
outputs=out, | |
fn=transcribe, | |
cache_examples=True, | |
) | |
gr.Markdown( | |
""" | |
## Remarks: | |
- **The optimal performance of the model is achieved when running on a GPU with a | |
minimum of 8GB of VRAM. However, due to budget constraints, the author is currently | |
limited to utilizing the free CPU on HF, resulting in slower inference speeds.** | |
- **Longer sentences yield a more naturally flowing result. | |
Brief expressions like "Hi" or "How are you" may yield suboptimal outcomes.** | |
- **The model might occasionally produce noise or generate random speech. | |
Consider re-recording or re-running for enhanced clarity and accuracy.** | |
- **By utilizing this application, you provide consent for your voice to | |
be synthesized by pre-trained models.** | |
- **If encountering an error, please try re-running or reloading the page.** | |
- **This app primarily functions as an educational tool for English learners. | |
The author does not endorse or support any malicious or misuse of this application.** | |
- **The user acknowledges and agrees that the use of the software is at the user's sole risk.** | |
""") | |
if __name__ == "__main__": | |
demo.launch() |