Spaces:
Runtime error
Runtime error
File size: 11,737 Bytes
99c7343 c676145 99c7343 feb09b2 c676145 6b32a15 c676145 99c7343 c676145 99c7343 c676145 3cd8d77 c676145 bd6bb1a c676145 6c28574 eaedf17 6c28574 eaedf17 c676145 bd6bb1a c676145 eaedf17 c676145 eaedf17 c676145 eaedf17 c676145 eaedf17 4615a50 eaedf17 c676145 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
print("NLTK")
import nltk
nltk.download('punkt')
import gradio as gr
import numpy as np
import whisper
import scipy.io.wavfile
#StyleTTS2 imports
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import random
random.seed(0)
np.random.seed(0)
# load packages
import yaml
from munch import Munch
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
from nltk.tokenize import word_tokenize
from models import *
from utils import *
from text_utils import TextCleaner
textclenaer = TextCleaner()
import phonemizer
# Global values
sample_rate_value=24000
original_voice_path = "ref_voice.wav"
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def compute_style(path):
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# load phonemizer
#phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt')))
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True)
config = yaml.safe_load(open("Models/LibriTTS/config.yml"))
# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)
# load BERT model
from Utils.PLBERT.util import load_plbert
BERT_path = config.get('PLBERT_dir', False)
plbert = load_plbert(BERT_path)
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]
params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu')
params = params_whole['net']
for key in model:
if key in params:
print('%s loaded' % key)
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
model[key].load_state_dict(new_state_dict, strict=False)
# except:
# _load(params[key], model[key])
_ = [model[key].eval() for key in model]
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
sampler = DiffusionSampler(
model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
clamp=False
)
def inference(text, ref_s, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1):
text = text.strip()
ps = global_phonemizer.phonemize([text])
#ps = phonemizer([text], lang='en_us')
ps = word_tokenize(ps[0])
ps = ' '.join(ps)
tokens = textclenaer(ps)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
d = model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
if model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later
def transcribe(audio):
transcribed_text = ""
try:
whisper_model = whisper.load_model("base")
result = whisper_model.transcribe(audio)
transcribed_text = result["text"]
except Exception as exc:
print(exc)
transcribed_text = "An error occured. Please try again."
print(transcribed_text)
# ref_s = compute_style(original_voice_path) # run locally
ref_s = compute_style(audio) # run on HF
wav = inference(transcribed_text, ref_s, alpha=0.1, beta=0.5, diffusion_steps=10, embedding_scale=1)
scaled = np.int16(wav / np.max(np.abs(wav)) * 32767)
return (sample_rate_value, scaled)
def record_speaker(audio):
sr, voice = audio
scaled = np.int16(voice / np.max(np.abs(voice)) * 32767)
scipy.io.wavfile.write(original_voice_path, sr, scaled)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(""" # AccentCoach: Transform Any Accent into American Accent.
**This is an educational app designed to transform the speech of a non-native English speaker into a native American accent.**
**The tool aims to coach learners in <ins>accent reduction</ins> and pronunciation improvement. It performs much better on <ins>longer speech</ins>.**
**The code is based on style diffusion and adversarial training with LSLMs outlined in StyleTTS2 paper.**
**It is strongly advised to duplicate this space and run it on a powerful GPU. Inference time can be reduced to less than a second when utilizing an Nvidia 3090.**
""")
# with gr.Accordion("First-Time Users (Click Here):", open=False):
# gr.Markdown("""
# **Record the reference voice:** Kindly capture your voice as you read the provided
# text. Please ensure that you have granted microphone access in your browser settings.
# > I must not fear. Fear is the mind-killer. Fear is the little-death that brings total obliteration.
# I will face my fear. I will permit it to pass over me and through me. And when it has gone past I
# will turn the inner eye to see its path. Where the fear has gone there will be nothing. Only I will remain.
# Ensure clarity in your pronunciation, as the quality of this recording
# significantly influences the future results. Once done please click "Save".
# If the quality of the native voice is not satisfactory, you can come back and
# re-record your voice here again.
# You can also upload your voice or someone else's voice.
# """)
# speaker_voice = gr.Audio(sources=["microphone", "upload"], format="wav", label="Record reference voice:",show_download_button="True")
# ref_btn = gr.Button("Save")
# ref_btn.click(record_speaker, inputs= speaker_voice, outputs=None)
with gr.Column():
gr.Markdown("""
*Initiate the recording process by selecting the **Record** button. Speak Clearly and ensure a noise-free environment.*
""")
inp = gr.Audio(sources=["microphone", "upload"], format="wav", type="filepath",
label="Original accent:",show_download_button="True")
gr.Markdown("""
*Press the **Run** button to listen to your native accent:*
""")
out = gr.Audio(label="Native accent:", autoplay="True", show_download_button="True")
btn = gr.Button("Run")
btn.click(transcribe, inputs=inp, outputs=out)
gr.Examples(
examples=[
["https://github.com/otioss/otioss.github.io/raw/main/assets/audio/Albert-Einstein.wav",],
["https://github.com/otioss/otioss.github.io/raw/main/assets/audio/Arnold-Schwarzenegger.wav" ,],
],
inputs=inp,
outputs=out,
fn=transcribe,
cache_examples=True,
)
gr.Markdown(
"""
## Remarks:
- **The optimal performance of the model is achieved when running on a GPU with a
minimum of 8GB of VRAM. However, due to budget constraints, the author is currently
limited to utilizing the free CPU on HF, resulting in slower inference speeds.**
- **Longer sentences yield a more naturally flowing result.
Brief expressions like "Hi" or "How are you" may yield suboptimal outcomes.**
- **The model might occasionally produce noise or generate random speech.
Consider re-recording or re-running for enhanced clarity and accuracy.**
- **By utilizing this application, you provide consent for your voice to
be synthesized by pre-trained models.**
- **If encountering an error, please try re-running or reloading the page.**
- **This app primarily functions as an educational tool for English learners.
The author does not endorse or support any malicious or misuse of this application.**
- **The user acknowledges and agrees that the use of the software is at the user's sole risk.**
""")
if __name__ == "__main__":
demo.launch() |