Spaces:
Runtime error
Runtime error
import inspect | |
import os | |
from typing import TYPE_CHECKING, List, Literal, Union | |
from datasets import concatenate_datasets, interleave_datasets, load_dataset, load_from_disk | |
from ..extras.constants import FILEEXT2TYPE | |
from ..extras.logging import get_logger | |
from .aligner import align_dataset | |
from .parser import get_dataset_list | |
from .preprocess import get_preprocess_and_print_func | |
from .template import get_template_and_fix_tokenizer | |
from .utils import checksum | |
if TYPE_CHECKING: | |
from datasets import Dataset, IterableDataset | |
from transformers import Seq2SeqTrainingArguments | |
from transformers.tokenization_utils import PreTrainedTokenizer | |
from ..hparams import DataArguments, ModelArguments | |
from .parser import DatasetAttr | |
logger = get_logger(__name__) | |
def load_single_dataset( | |
dataset_attr: "DatasetAttr", | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
): | |
data_path, data_name, data_dir, data_files = None, None, None, None | |
if dataset_attr.load_from in ["hf_hub", "ms_hub"]: | |
data_path = dataset_attr.dataset_name | |
data_name = dataset_attr.subset | |
data_dir = dataset_attr.folder | |
elif dataset_attr.load_from == "script": | |
data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) | |
data_name = dataset_attr.subset | |
data_dir = dataset_attr.folder | |
elif dataset_attr.load_from == "file": | |
data_files = [] | |
local_path: str = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) | |
if os.path.isdir(local_path): # is directory | |
for file_name in os.listdir(local_path): | |
data_files.append(os.path.join(local_path, file_name)) | |
if data_path is None: | |
data_path = FILEEXT2TYPE.get(file_name.split(".")[-1], None) | |
elif data_path != FILEEXT2TYPE.get(file_name.split(".")[-1], None): | |
raise ValueError("File types should be identical.") | |
elif os.path.isfile(local_path): # is file | |
data_files.append(local_path) | |
data_path = FILEEXT2TYPE.get(local_path.split(".")[-1], None) | |
else: | |
raise ValueError("File not found.") | |
if data_path is None: | |
raise ValueError("File extension must be txt, csv, json or jsonl.") | |
checksum(data_files, dataset_attr.dataset_sha1) | |
else: | |
raise NotImplementedError | |
if dataset_attr.load_from == "ms_hub": | |
try: | |
from modelscope import MsDataset | |
from modelscope.utils.config_ds import MS_DATASETS_CACHE | |
cache_dir = model_args.cache_dir or MS_DATASETS_CACHE | |
dataset = MsDataset.load( | |
dataset_name=data_path, | |
subset_name=data_name, | |
data_dir=data_dir, | |
data_files=data_files, | |
split=data_args.split, | |
cache_dir=cache_dir, | |
token=model_args.ms_hub_token, | |
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")), | |
).to_hf_dataset() | |
except ImportError: | |
raise ImportError("Please install modelscope via `pip install modelscope -U`") | |
else: | |
if "trust_remote_code" in inspect.signature(load_dataset).parameters: # for datasets==2.16.0 | |
kwargs = {"trust_remote_code": True} | |
else: | |
kwargs = {} | |
dataset = load_dataset( | |
path=data_path, | |
name=data_name, | |
data_dir=data_dir, | |
data_files=data_files, | |
split=data_args.split, | |
cache_dir=model_args.cache_dir, | |
token=model_args.hf_hub_token, | |
streaming=(data_args.streaming and (dataset_attr.load_from != "file")), | |
**kwargs, | |
) | |
if data_args.streaming and (dataset_attr.load_from == "file"): # faster than specifying streaming=True | |
dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter | |
if data_args.max_samples is not None: # truncate dataset | |
num_samples = min(data_args.max_samples, len(dataset)) | |
dataset = dataset.select(range(num_samples)) | |
return align_dataset(dataset, dataset_attr, data_args) | |
def merge_dataset( | |
all_datasets: List[Union["Dataset", "IterableDataset"]], | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
) -> Union["Dataset", "IterableDataset"]: | |
if len(all_datasets) == 1: | |
return all_datasets[0] | |
elif data_args.mix_strategy == "concat": | |
if data_args.streaming: | |
logger.warning("The samples between different datasets will not be mixed in streaming mode.") | |
return concatenate_datasets(all_datasets) | |
elif data_args.mix_strategy.startswith("interleave"): | |
if not data_args.streaming: | |
logger.warning("We recommend using `mix_strategy=concat` in non-streaming mode.") | |
return interleave_datasets( | |
datasets=all_datasets, | |
probabilities=data_args.interleave_probs, | |
seed=training_args.seed, | |
stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted", | |
) | |
else: | |
raise ValueError("Unknown mixing strategy.") | |
def get_dataset( | |
tokenizer: "PreTrainedTokenizer", | |
model_args: "ModelArguments", | |
data_args: "DataArguments", | |
training_args: "Seq2SeqTrainingArguments", | |
stage: Literal["pt", "sft", "rm", "ppo"], | |
# split: Optional[str] = "train", # TODO: add split | |
) -> Union["Dataset", "IterableDataset"]: | |
template = get_template_and_fix_tokenizer(data_args.template, tokenizer) | |
if data_args.train_on_prompt and template.efficient_eos: | |
raise ValueError("Current template does not support `train_on_prompt`.") | |
# Load from cache | |
if data_args.cache_path is not None: | |
if os.path.exists(data_args.cache_path): | |
logger.warning("Loading dataset from disk will ignore other data arguments.") | |
dataset = load_from_disk(data_args.cache_path) | |
if data_args.streaming: | |
dataset = dataset.to_iterable_dataset() | |
return dataset | |
if data_args.streaming: | |
raise ValueError("Turn off dataset streaming to save cache files.") | |
with training_args.main_process_first(desc="load dataset"): | |
all_datasets = [] | |
for dataset_attr in get_dataset_list(data_args): # TODO: add split | |
all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args)) | |
dataset = merge_dataset(all_datasets, data_args, training_args) | |
with training_args.main_process_first(desc="pre-process dataset"): | |
preprocess_func, print_function = get_preprocess_and_print_func( | |
tokenizer, template, data_args, training_args, stage | |
) | |
column_names = list(next(iter(dataset)).keys()) | |
kwargs = {} | |
if not data_args.streaming: | |
kwargs = dict( | |
num_proc=data_args.preprocessing_num_workers, | |
load_from_cache_file=(not data_args.overwrite_cache), | |
desc="Running tokenizer on dataset", | |
) | |
dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs) | |
if data_args.cache_path is not None and not os.path.exists(data_args.cache_path): | |
if training_args.should_save: | |
dataset.save_to_disk(data_args.cache_path) | |
logger.info("Dataset cache saved at {}.".format(data_args.cache_path)) | |
if training_args.should_log: | |
try: | |
print_function(next(iter(dataset))) | |
except StopIteration: | |
raise RuntimeError("Empty dataset!") | |
return dataset | |