import inspect import os from typing import TYPE_CHECKING, List, Literal, Union from datasets import concatenate_datasets, interleave_datasets, load_dataset, load_from_disk from ..extras.constants import FILEEXT2TYPE from ..extras.logging import get_logger from .aligner import align_dataset from .parser import get_dataset_list from .preprocess import get_preprocess_and_print_func from .template import get_template_and_fix_tokenizer from .utils import checksum if TYPE_CHECKING: from datasets import Dataset, IterableDataset from transformers import Seq2SeqTrainingArguments from transformers.tokenization_utils import PreTrainedTokenizer from ..hparams import DataArguments, ModelArguments from .parser import DatasetAttr logger = get_logger(__name__) def load_single_dataset( dataset_attr: "DatasetAttr", model_args: "ModelArguments", data_args: "DataArguments", ): data_path, data_name, data_dir, data_files = None, None, None, None if dataset_attr.load_from in ["hf_hub", "ms_hub"]: data_path = dataset_attr.dataset_name data_name = dataset_attr.subset data_dir = dataset_attr.folder elif dataset_attr.load_from == "script": data_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) data_name = dataset_attr.subset data_dir = dataset_attr.folder elif dataset_attr.load_from == "file": data_files = [] local_path: str = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name) if os.path.isdir(local_path): # is directory for file_name in os.listdir(local_path): data_files.append(os.path.join(local_path, file_name)) if data_path is None: data_path = FILEEXT2TYPE.get(file_name.split(".")[-1], None) elif data_path != FILEEXT2TYPE.get(file_name.split(".")[-1], None): raise ValueError("File types should be identical.") elif os.path.isfile(local_path): # is file data_files.append(local_path) data_path = FILEEXT2TYPE.get(local_path.split(".")[-1], None) else: raise ValueError("File not found.") if data_path is None: raise ValueError("File extension must be txt, csv, json or jsonl.") checksum(data_files, dataset_attr.dataset_sha1) else: raise NotImplementedError if dataset_attr.load_from == "ms_hub": try: from modelscope import MsDataset from modelscope.utils.config_ds import MS_DATASETS_CACHE cache_dir = model_args.cache_dir or MS_DATASETS_CACHE dataset = MsDataset.load( dataset_name=data_path, subset_name=data_name, data_dir=data_dir, data_files=data_files, split=data_args.split, cache_dir=cache_dir, token=model_args.ms_hub_token, use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")), ).to_hf_dataset() except ImportError: raise ImportError("Please install modelscope via `pip install modelscope -U`") else: if "trust_remote_code" in inspect.signature(load_dataset).parameters: # for datasets==2.16.0 kwargs = {"trust_remote_code": True} else: kwargs = {} dataset = load_dataset( path=data_path, name=data_name, data_dir=data_dir, data_files=data_files, split=data_args.split, cache_dir=model_args.cache_dir, token=model_args.hf_hub_token, streaming=(data_args.streaming and (dataset_attr.load_from != "file")), **kwargs, ) if data_args.streaming and (dataset_attr.load_from == "file"): # faster than specifying streaming=True dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter if data_args.max_samples is not None: # truncate dataset num_samples = min(data_args.max_samples, len(dataset)) dataset = dataset.select(range(num_samples)) return align_dataset(dataset, dataset_attr, data_args) def merge_dataset( all_datasets: List[Union["Dataset", "IterableDataset"]], data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", ) -> Union["Dataset", "IterableDataset"]: if len(all_datasets) == 1: return all_datasets[0] elif data_args.mix_strategy == "concat": if data_args.streaming: logger.warning("The samples between different datasets will not be mixed in streaming mode.") return concatenate_datasets(all_datasets) elif data_args.mix_strategy.startswith("interleave"): if not data_args.streaming: logger.warning("We recommend using `mix_strategy=concat` in non-streaming mode.") return interleave_datasets( datasets=all_datasets, probabilities=data_args.interleave_probs, seed=training_args.seed, stopping_strategy="first_exhausted" if data_args.mix_strategy.endswith("under") else "all_exhausted", ) else: raise ValueError("Unknown mixing strategy.") def get_dataset( tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", stage: Literal["pt", "sft", "rm", "ppo"], # split: Optional[str] = "train", # TODO: add split ) -> Union["Dataset", "IterableDataset"]: template = get_template_and_fix_tokenizer(data_args.template, tokenizer) if data_args.train_on_prompt and template.efficient_eos: raise ValueError("Current template does not support `train_on_prompt`.") # Load from cache if data_args.cache_path is not None: if os.path.exists(data_args.cache_path): logger.warning("Loading dataset from disk will ignore other data arguments.") dataset = load_from_disk(data_args.cache_path) if data_args.streaming: dataset = dataset.to_iterable_dataset() return dataset if data_args.streaming: raise ValueError("Turn off dataset streaming to save cache files.") with training_args.main_process_first(desc="load dataset"): all_datasets = [] for dataset_attr in get_dataset_list(data_args): # TODO: add split all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args)) dataset = merge_dataset(all_datasets, data_args, training_args) with training_args.main_process_first(desc="pre-process dataset"): preprocess_func, print_function = get_preprocess_and_print_func( tokenizer, template, data_args, training_args, stage ) column_names = list(next(iter(dataset)).keys()) kwargs = {} if not data_args.streaming: kwargs = dict( num_proc=data_args.preprocessing_num_workers, load_from_cache_file=(not data_args.overwrite_cache), desc="Running tokenizer on dataset", ) dataset = dataset.map(preprocess_func, batched=True, remove_columns=column_names, **kwargs) if data_args.cache_path is not None and not os.path.exists(data_args.cache_path): if training_args.should_save: dataset.save_to_disk(data_args.cache_path) logger.info("Dataset cache saved at {}.".format(data_args.cache_path)) if training_args.should_log: try: print_function(next(iter(dataset))) except StopIteration: raise RuntimeError("Empty dataset!") return dataset