Spaces:
Sleeping
Sleeping
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments | |
# Load dataset | |
dataset = load_dataset('json', data_files='flirty_dataset.json') | |
# Tokenizer and model | |
model_name = "gpt2" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Tokenize dataset | |
def tokenize_function(examples): | |
return tokenizer(examples['prompt'], truncation=True, padding="max_length", max_length=128) | |
tokenized_dataset = dataset.map(tokenize_function, batched=True) | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./fine_tuned_gpt2", | |
evaluation_strategy="epoch", | |
save_strategy="epoch", | |
learning_rate=5e-5, | |
num_train_epochs=3, | |
per_device_train_batch_size=8, | |
save_total_limit=2, | |
logging_dir="./logs", | |
logging_steps=10, | |
fp16=True | |
) | |
# Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_dataset["train"], | |
eval_dataset=tokenized_dataset["validation"], | |
tokenizer=tokenizer | |
) | |
# Train the model | |
trainer.train() | |
# Save model | |
trainer.save_model("./fine_tuned_gpt2") | |
tokenizer.save_pretrained("./fine_tuned_gpt2") | |