Spaces:
Sleeping
Sleeping
Upload train_model.py
Browse files- train_model.py +46 -0
train_model.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
3 |
+
|
4 |
+
# Load dataset
|
5 |
+
dataset = load_dataset('json', data_files='flirty_dataset.json')
|
6 |
+
|
7 |
+
# Tokenizer and model
|
8 |
+
model_name = "gpt2"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Tokenize dataset
|
13 |
+
def tokenize_function(examples):
|
14 |
+
return tokenizer(examples['prompt'], truncation=True, padding="max_length", max_length=128)
|
15 |
+
|
16 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
17 |
+
|
18 |
+
# Training arguments
|
19 |
+
training_args = TrainingArguments(
|
20 |
+
output_dir="./fine_tuned_gpt2",
|
21 |
+
evaluation_strategy="epoch",
|
22 |
+
save_strategy="epoch",
|
23 |
+
learning_rate=5e-5,
|
24 |
+
num_train_epochs=3,
|
25 |
+
per_device_train_batch_size=8,
|
26 |
+
save_total_limit=2,
|
27 |
+
logging_dir="./logs",
|
28 |
+
logging_steps=10,
|
29 |
+
fp16=True
|
30 |
+
)
|
31 |
+
|
32 |
+
# Trainer
|
33 |
+
trainer = Trainer(
|
34 |
+
model=model,
|
35 |
+
args=training_args,
|
36 |
+
train_dataset=tokenized_dataset["train"],
|
37 |
+
eval_dataset=tokenized_dataset["validation"],
|
38 |
+
tokenizer=tokenizer
|
39 |
+
)
|
40 |
+
|
41 |
+
# Train the model
|
42 |
+
trainer.train()
|
43 |
+
|
44 |
+
# Save model
|
45 |
+
trainer.save_model("./fine_tuned_gpt2")
|
46 |
+
tokenizer.save_pretrained("./fine_tuned_gpt2")
|