|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import TYPE_CHECKING, Dict |
|
|
|
import torch |
|
from transformers.utils import cached_file |
|
|
|
from ...extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME |
|
from ...extras.logging import get_logger |
|
|
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedModel |
|
|
|
from ...hparams import ModelArguments |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]: |
|
r""" |
|
Loads value head parameters from Hugging Face Hub or local disk. |
|
|
|
Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`. |
|
""" |
|
kwargs = {"path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir, "token": model_args.hf_hub_token} |
|
err_text = "" |
|
|
|
try: |
|
from safetensors import safe_open |
|
|
|
vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs) |
|
with safe_open(vhead_file, framework="pt", device="cpu") as f: |
|
return {key: f.get_tensor(key) for key in f.keys()} |
|
except Exception as err: |
|
err_text = str(err) |
|
|
|
try: |
|
vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs) |
|
return torch.load(vhead_file, map_location="cpu") |
|
except Exception as err: |
|
err_text = str(err) |
|
|
|
logger.info("Provided path ({}) does not contain value head weights: {}.".format(path_or_repo_id, err_text)) |
|
logger.info("Ignore the above message if you are not resuming the training of a value head model.") |
|
return None |
|
|
|
|
|
def prepare_valuehead_model(model: "PreTrainedModel") -> None: |
|
if getattr(model.config, "model_type", None) == "llava": |
|
setattr(model, "lm_head", model.language_model.get_output_embeddings()) |
|
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"]) |
|
|
|
if getattr(model.config, "model_type", None) == "chatglm": |
|
setattr(model, "lm_head", model.transformer.output_layer) |
|
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"]) |
|
|
|
if getattr(model.config, "model_type", None) == "internlm2": |
|
setattr(model, "lm_head", model.output) |
|
setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"]) |
|
|