File size: 2,769 Bytes
13362e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING, Dict

import torch
from transformers.utils import cached_file

from ...extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME
from ...extras.logging import get_logger


if TYPE_CHECKING:
    from transformers import PreTrainedModel

    from ...hparams import ModelArguments


logger = get_logger(__name__)


def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]:
    r"""
    Loads value head parameters from Hugging Face Hub or local disk.

    Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`.
    """
    kwargs = {"path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir, "token": model_args.hf_hub_token}
    err_text = ""

    try:
        from safetensors import safe_open

        vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs)
        with safe_open(vhead_file, framework="pt", device="cpu") as f:
            return {key: f.get_tensor(key) for key in f.keys()}
    except Exception as err:
        err_text = str(err)

    try:
        vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs)
        return torch.load(vhead_file, map_location="cpu")
    except Exception as err:
        err_text = str(err)

    logger.info("Provided path ({}) does not contain value head weights: {}.".format(path_or_repo_id, err_text))
    logger.info("Ignore the above message if you are not resuming the training of a value head model.")
    return None


def prepare_valuehead_model(model: "PreTrainedModel") -> None:
    if getattr(model.config, "model_type", None) == "llava":
        setattr(model, "lm_head", model.language_model.get_output_embeddings())
        setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])

    if getattr(model.config, "model_type", None) == "chatglm":
        setattr(model, "lm_head", model.transformer.output_layer)
        setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])

    if getattr(model.config, "model_type", None) == "internlm2":
        setattr(model, "lm_head", model.output)
        setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])