pv_segmentation / app.py
mouadenna's picture
Update app.py
8707084 verified
import streamlit as st
import geopandas as gpd
import leafmap.foliumap as leafmap
from PIL import Image
import rasterio
from rasterio.windows import Window
from stqdm import stqdm
import io
import zipfile
import os
import albumentations as albu
import segmentation_models_pytorch as smp
from albumentations.pytorch.transforms import ToTensorV2
from shapely.geometry import shape
from shapely.ops import unary_union
from rasterio.features import shapes
import torch
import numpy as np
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ENCODER = 'se_resnext50_32x4d'
ENCODER_WEIGHTS = 'imagenet'
# Load and prepare the model
@st.cache_resource
def load_model():
model = torch.load('deeplabv3 v15.pth', map_location=DEVICE)
model.eval().float()
return model
best_model = load_model()
def to_tensor(x, **kwargs):
return x.astype('float32')
# Preprocessing
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
def get_preprocessing(tile_size):
_transform = [
albu.PadIfNeeded(min_height=tile_size, min_width=tile_size, always_apply=True),
albu.Lambda(image=preprocessing_fn),
albu.Lambda(image=to_tensor, mask=to_tensor),
ToTensorV2(),
]
return albu.Compose(_transform)
def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4, threshold=0.6):
preprocess = get_preprocessing(tile_size)
tiles = []
with rasterio.open(map_file) as src:
height = src.height
width = src.width
effective_tile_size = tile_size - overlap
for y in stqdm(range(0, height, effective_tile_size)):
for x in range(0, width, effective_tile_size):
batch_images = []
batch_metas = []
for i in range(batch_size):
curr_y = y + (i * effective_tile_size)
if curr_y >= height:
break
window = Window(x, curr_y, tile_size, tile_size)
out_image = src.read(window=window)
if out_image.shape[0] == 1:
out_image = np.repeat(out_image, 3, axis=0)
elif out_image.shape[0] != 3:
raise ValueError("The number of channels in the image is not supported")
out_image = np.transpose(out_image, (1, 2, 0))
tile_image = Image.fromarray(out_image.astype(np.uint8))
out_meta = src.meta.copy()
out_meta.update({
"driver": "GTiff",
"height": tile_size,
"width": tile_size,
"transform": rasterio.windows.transform(window, src.transform)
})
tile_image = np.array(tile_image)
preprocessed_tile = preprocess(image=tile_image)['image']
batch_images.append(preprocessed_tile)
batch_metas.append(out_meta)
if not batch_images:
break
batch_tensor = torch.cat([img.unsqueeze(0).to(DEVICE) for img in batch_images], dim=0)
with torch.no_grad():
batch_masks = model(batch_tensor)
batch_masks = torch.sigmoid(batch_masks)
batch_masks = (batch_masks > threshold).float()
for j, mask_tensor in enumerate(batch_masks):
mask_resized = torch.nn.functional.interpolate(mask_tensor.unsqueeze(0),
size=(tile_size, tile_size), mode='bilinear',
align_corners=False).squeeze(0)
mask_array = mask_resized.squeeze().cpu().numpy()
if mask_array.any() == 1:
tiles.append([mask_array, batch_metas[j]])
return tiles
def create_vector_mask(tiles, output_path):
all_polygons = []
for mask_array, meta in tiles:
# Ensure mask is binary
mask_array = (mask_array > 0).astype(np.uint8)
# Get shapes from the mask
mask_shapes = list(shapes(mask_array, mask=mask_array, transform=meta['transform']))
# Convert shapes to Shapely polygons
polygons = [shape(geom) for geom, value in mask_shapes if value == 1]
all_polygons.extend(polygons)
# Perform union of all polygons
union_polygon = unary_union(all_polygons)
# Create a GeoDataFrame
gdf = gpd.GeoDataFrame({'geometry': [union_polygon]}, crs=meta['crs'])
# Save to file
gdf.to_file(output_path)
# Calculate area in square meters
area_m2 = gdf.to_crs(epsg=3857).area.sum()
return gdf, area_m2
def display_map(shapefile_path, tif_path):
st.title("Map with Shape and TIFF Overlay")
# Load the shapefile
mask = gpd.read_file(shapefile_path)
# Check and reproject the mask to EPSG:3857 if needed
if mask.crs is None or mask.crs.to_string() != 'EPSG:3857':
mask = mask.to_crs('EPSG:3857')
# Get the bounds of the shapefile to center the map
bounds = mask.total_bounds # [minx, miny, maxx, maxy]
center = [(bounds[1] + bounds[3]) / 2, (bounds[0] + bounds[2]) / 2]
# Create a leafmap centered on the shapefile bounds
m = leafmap.Map(
center=[center[1], center[0]], # leafmap uses [latitude, longitude]
zoom=10,
crs='EPSG3857'
)
# Add the mask layer to the map
m.add_gdf(mask, layer_name="Shapefile Mask")
# Add the TIFF image to the map as RGB
m.add_raster(tif_path, layer_name="Satellite Image", rgb=True, opacity=0.9)
# Display the map in Streamlit
m.to_streamlit()
def main():
st.title("PV Segmentor")
uploaded_file = st.file_uploader("Choose a TIF file", type="tif")
if uploaded_file is not None:
st.write("File uploaded successfully!")
resolution = st.radio(
"Selext Processing resolution:",
(512, 1024),
index=0
)
overlap = st.slider(
'Select the value of overlap',
min_value=50,
max_value=150,
value=100,
step=25
)
threshold = st.slider(
'Select the value of the threshold',
min_value=0.1,
max_value=0.9,
value=0.6,
step=0.01
)
st.write('You selected:',resolution)
st.write('Selected overlap value:', overlap)
st.write('Selected threshold value:', threshold)
if st.button("Process File"):
st.write("Processing...")
with open("temp.tif", "wb") as f:
f.write(uploaded_file.getbuffer())
best_model.float()
tiles = extract_tiles("temp.tif", best_model, tile_size=resolution, overlap=overlap, batch_size=4, threshold=threshold)
st.write("Processing complete!")
output_path = "output_mask.shp"
result_gdf, area_m2 = create_vector_mask(tiles, output_path)
st.write("Vector mask created successfully!")
st.write(f"Total area occupied by PV panels: {area_m2:.4f} m^2")
# Offer the shapefile for download
shp_files = [f for f in os.listdir() if
f.startswith("output_mask") and f.endswith((".shp", ".shx", ".dbf", ".prj"))]
with io.BytesIO() as zip_buffer:
with zipfile.ZipFile(zip_buffer, 'a', zipfile.ZIP_DEFLATED, False) as zip_file:
for file in shp_files:
zip_file.write(file)
zip_buffer.seek(0)
st.download_button(
label="Download shapefile",
data=zip_buffer,
file_name="output_mask.zip",
mime="application/zip"
)
# Display the map with the predicted shapefile
display_map("output_mask.shp", "temp.tif")
# Clean up temporary files
#os.remove("temp.tif")
#for file in shp_files:
# os.remove(file)
if __name__ == "__main__":
main()