Spaces:
Sleeping
Sleeping
File size: 8,310 Bytes
625dedf eb12373 625dedf d1639b1 625dedf 54c7430 8d082c2 54c7430 eb12373 8d082c2 54c7430 8707084 54c7430 dc0d714 54c7430 8707084 54c7430 8707084 8d082c2 54c7430 8707084 8d082c2 8707084 dc0d714 8d082c2 dc0d714 8d082c2 8707084 dc0d714 8707084 dc0d714 8707084 625dedf 54c7430 625dedf 8707084 625dedf 54c7430 d1639b1 625dedf 54c7430 625dedf 54c7430 625dedf 54c7430 625dedf 54c7430 625dedf 54c7430 625dedf 54c7430 eb12373 625dedf 54c7430 625dedf 54c7430 625dedf eb12373 54c7430 625dedf 74cc41d 54c7430 625dedf 54c7430 625dedf 54c7430 625dedf 54c7430 625dedf 8707084 54c7430 dc0d714 54c7430 dc0d714 54c7430 dc0d714 54c7430 dc0d714 54c7430 dc0d714 54c7430 dc0d714 54c7430 5d91a16 54c7430 8707084 eb12373 dc0d714 eb12373 dc0d714 eb12373 dc0d714 eb12373 dc0d714 eb12373 dc0d714 eb12373 dc0d714 eb12373 dc0d714 eb12373 8707084 625dedf eb12373 625dedf 8707084 dc0d714 8707084 dc0d714 8707084 74cc41d eb12373 74cc41d dc0d714 8707084 74cc41d dc0d714 8707084 625dedf 54c7430 8707084 54c7430 625dedf 8707084 54c7430 625dedf 8707084 5d91a16 54c7430 eb12373 54c7430 8707084 54c7430 8707084 54c7430 dc0d714 8707084 eb12373 dc0d714 8707084 be9ed94 8707084 625dedf dc0d714 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import streamlit as st
import geopandas as gpd
import leafmap.foliumap as leafmap
from PIL import Image
import rasterio
from rasterio.windows import Window
from stqdm import stqdm
import io
import zipfile
import os
import albumentations as albu
import segmentation_models_pytorch as smp
from albumentations.pytorch.transforms import ToTensorV2
from shapely.geometry import shape
from shapely.ops import unary_union
from rasterio.features import shapes
import torch
import numpy as np
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ENCODER = 'se_resnext50_32x4d'
ENCODER_WEIGHTS = 'imagenet'
# Load and prepare the model
@st.cache_resource
def load_model():
model = torch.load('deeplabv3 v15.pth', map_location=DEVICE)
model.eval().float()
return model
best_model = load_model()
def to_tensor(x, **kwargs):
return x.astype('float32')
# Preprocessing
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
def get_preprocessing(tile_size):
_transform = [
albu.PadIfNeeded(min_height=tile_size, min_width=tile_size, always_apply=True),
albu.Lambda(image=preprocessing_fn),
albu.Lambda(image=to_tensor, mask=to_tensor),
ToTensorV2(),
]
return albu.Compose(_transform)
def extract_tiles(map_file, model, tile_size=512, overlap=0, batch_size=4, threshold=0.6):
preprocess = get_preprocessing(tile_size)
tiles = []
with rasterio.open(map_file) as src:
height = src.height
width = src.width
effective_tile_size = tile_size - overlap
for y in stqdm(range(0, height, effective_tile_size)):
for x in range(0, width, effective_tile_size):
batch_images = []
batch_metas = []
for i in range(batch_size):
curr_y = y + (i * effective_tile_size)
if curr_y >= height:
break
window = Window(x, curr_y, tile_size, tile_size)
out_image = src.read(window=window)
if out_image.shape[0] == 1:
out_image = np.repeat(out_image, 3, axis=0)
elif out_image.shape[0] != 3:
raise ValueError("The number of channels in the image is not supported")
out_image = np.transpose(out_image, (1, 2, 0))
tile_image = Image.fromarray(out_image.astype(np.uint8))
out_meta = src.meta.copy()
out_meta.update({
"driver": "GTiff",
"height": tile_size,
"width": tile_size,
"transform": rasterio.windows.transform(window, src.transform)
})
tile_image = np.array(tile_image)
preprocessed_tile = preprocess(image=tile_image)['image']
batch_images.append(preprocessed_tile)
batch_metas.append(out_meta)
if not batch_images:
break
batch_tensor = torch.cat([img.unsqueeze(0).to(DEVICE) for img in batch_images], dim=0)
with torch.no_grad():
batch_masks = model(batch_tensor)
batch_masks = torch.sigmoid(batch_masks)
batch_masks = (batch_masks > threshold).float()
for j, mask_tensor in enumerate(batch_masks):
mask_resized = torch.nn.functional.interpolate(mask_tensor.unsqueeze(0),
size=(tile_size, tile_size), mode='bilinear',
align_corners=False).squeeze(0)
mask_array = mask_resized.squeeze().cpu().numpy()
if mask_array.any() == 1:
tiles.append([mask_array, batch_metas[j]])
return tiles
def create_vector_mask(tiles, output_path):
all_polygons = []
for mask_array, meta in tiles:
# Ensure mask is binary
mask_array = (mask_array > 0).astype(np.uint8)
# Get shapes from the mask
mask_shapes = list(shapes(mask_array, mask=mask_array, transform=meta['transform']))
# Convert shapes to Shapely polygons
polygons = [shape(geom) for geom, value in mask_shapes if value == 1]
all_polygons.extend(polygons)
# Perform union of all polygons
union_polygon = unary_union(all_polygons)
# Create a GeoDataFrame
gdf = gpd.GeoDataFrame({'geometry': [union_polygon]}, crs=meta['crs'])
# Save to file
gdf.to_file(output_path)
# Calculate area in square meters
area_m2 = gdf.to_crs(epsg=3857).area.sum()
return gdf, area_m2
def display_map(shapefile_path, tif_path):
st.title("Map with Shape and TIFF Overlay")
# Load the shapefile
mask = gpd.read_file(shapefile_path)
# Check and reproject the mask to EPSG:3857 if needed
if mask.crs is None or mask.crs.to_string() != 'EPSG:3857':
mask = mask.to_crs('EPSG:3857')
# Get the bounds of the shapefile to center the map
bounds = mask.total_bounds # [minx, miny, maxx, maxy]
center = [(bounds[1] + bounds[3]) / 2, (bounds[0] + bounds[2]) / 2]
# Create a leafmap centered on the shapefile bounds
m = leafmap.Map(
center=[center[1], center[0]], # leafmap uses [latitude, longitude]
zoom=10,
crs='EPSG3857'
)
# Add the mask layer to the map
m.add_gdf(mask, layer_name="Shapefile Mask")
# Add the TIFF image to the map as RGB
m.add_raster(tif_path, layer_name="Satellite Image", rgb=True, opacity=0.9)
# Display the map in Streamlit
m.to_streamlit()
def main():
st.title("PV Segmentor")
uploaded_file = st.file_uploader("Choose a TIF file", type="tif")
if uploaded_file is not None:
st.write("File uploaded successfully!")
resolution = st.radio(
"Selext Processing resolution:",
(512, 1024),
index=0
)
overlap = st.slider(
'Select the value of overlap',
min_value=50,
max_value=150,
value=100,
step=25
)
threshold = st.slider(
'Select the value of the threshold',
min_value=0.1,
max_value=0.9,
value=0.6,
step=0.01
)
st.write('You selected:',resolution)
st.write('Selected overlap value:', overlap)
st.write('Selected threshold value:', threshold)
if st.button("Process File"):
st.write("Processing...")
with open("temp.tif", "wb") as f:
f.write(uploaded_file.getbuffer())
best_model.float()
tiles = extract_tiles("temp.tif", best_model, tile_size=resolution, overlap=overlap, batch_size=4, threshold=threshold)
st.write("Processing complete!")
output_path = "output_mask.shp"
result_gdf, area_m2 = create_vector_mask(tiles, output_path)
st.write("Vector mask created successfully!")
st.write(f"Total area occupied by PV panels: {area_m2:.4f} m^2")
# Offer the shapefile for download
shp_files = [f for f in os.listdir() if
f.startswith("output_mask") and f.endswith((".shp", ".shx", ".dbf", ".prj"))]
with io.BytesIO() as zip_buffer:
with zipfile.ZipFile(zip_buffer, 'a', zipfile.ZIP_DEFLATED, False) as zip_file:
for file in shp_files:
zip_file.write(file)
zip_buffer.seek(0)
st.download_button(
label="Download shapefile",
data=zip_buffer,
file_name="output_mask.zip",
mime="application/zip"
)
# Display the map with the predicted shapefile
display_map("output_mask.shp", "temp.tif")
# Clean up temporary files
#os.remove("temp.tif")
#for file in shp_files:
# os.remove(file)
if __name__ == "__main__":
main() |