Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,14 +4,19 @@ import numpy as np
|
|
4 |
import plotly.express as px
|
5 |
import folium
|
6 |
from streamlit_folium import st_folium
|
7 |
-
|
8 |
# ----------------------------------------------------
|
9 |
# 1. Load data
|
10 |
# ----------------------------------------------------
|
11 |
@st.cache_data
|
12 |
def load_data():
|
|
|
13 |
daily_df = pd.read_csv("daily_data_2013_2024.csv", parse_dates=["date"])
|
14 |
monthly_df = pd.read_csv("monthly_data_2013_2024.csv")
|
|
|
|
|
|
|
|
|
15 |
return daily_df, monthly_df
|
16 |
|
17 |
daily_data, monthly_data = load_data()
|
@@ -30,7 +35,7 @@ st.title("Malaria & Dengue Outbreak Analysis (2013–2024)")
|
|
30 |
|
31 |
st.sidebar.header("Filters & Options")
|
32 |
|
33 |
-
# Choose disease type
|
34 |
disease_choice = st.sidebar.radio("Select Disease", ["Malaria", "Dengue"])
|
35 |
|
36 |
# Choose data granularity
|
@@ -40,75 +45,71 @@ data_choice = st.sidebar.radio("Data Granularity", ["Monthly", "Daily"])
|
|
40 |
location_list = list(LOCATIONS.keys())
|
41 |
selected_locations = st.sidebar.multiselect("Select Location(s)", location_list, default=location_list)
|
42 |
|
43 |
-
# For monthly data
|
44 |
if data_choice == "Monthly":
|
45 |
year_min = int(monthly_data["year"].min())
|
46 |
year_max = int(monthly_data["year"].max())
|
47 |
-
year_range = st.sidebar.slider(
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
)
|
53 |
-
# For daily data
|
54 |
else:
|
55 |
date_min = daily_data["date"].min()
|
56 |
date_max = daily_data["date"].max()
|
57 |
-
date_range = st.sidebar.date_input(
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
max_value=date_max
|
62 |
-
)
|
63 |
|
64 |
# ----------------------------------------------------
|
65 |
# 3. Filter data based on user input
|
66 |
# ----------------------------------------------------
|
67 |
if data_choice == "Monthly":
|
|
|
68 |
df = monthly_data[monthly_data["location"].isin(selected_locations)].copy()
|
69 |
# Filter year range
|
70 |
df = df[(df["year"] >= year_range[0]) & (df["year"] <= year_range[1])]
|
71 |
-
|
|
|
|
|
72 |
df["date"] = pd.to_datetime(df["year"].astype(str) + "-" + df["month"].astype(str) + "-01")
|
73 |
-
|
74 |
else:
|
|
|
75 |
df = daily_data[daily_data["location"].isin(selected_locations)].copy()
|
76 |
# Filter date range
|
77 |
-
df = df[
|
78 |
-
(df["date"] >= pd.to_datetime(date_range[0]))
|
79 |
-
& (df["date"] <= pd.to_datetime(date_range[1]))
|
80 |
-
]
|
81 |
|
82 |
# ----------------------------------------------------
|
83 |
# 4. Interactive Plotly Time-Series
|
84 |
# ----------------------------------------------------
|
85 |
st.subheader(f"{data_choice} {disease_choice} Risk & Climate Parameters")
|
86 |
|
|
|
87 |
risk_col = "malaria_risk" if disease_choice == "Malaria" else "dengue_risk"
|
88 |
|
89 |
if data_choice == "Monthly":
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
)
|
94 |
fig.update_layout(yaxis_title="Risk (0–1)")
|
|
|
95 |
st.plotly_chart(fig, use_container_width=True)
|
96 |
|
|
|
97 |
col1, col2 = st.columns(2)
|
98 |
with col1:
|
99 |
-
fig_temp = px.line(
|
100 |
-
|
101 |
-
title="Average Temperature (°C)"
|
102 |
-
)
|
103 |
st.plotly_chart(fig_temp, use_container_width=True)
|
104 |
with col2:
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
)
|
109 |
st.plotly_chart(fig_rain, use_container_width=True)
|
110 |
|
111 |
-
# Show outbreak
|
112 |
if disease_choice == "Malaria":
|
113 |
flag_col = "malaria_outbreak"
|
114 |
else:
|
@@ -117,33 +118,26 @@ if data_choice == "Monthly":
|
|
117 |
outbreak_months = df[df[flag_col] == True]
|
118 |
if not outbreak_months.empty:
|
119 |
st.write(f"**Months with likely {disease_choice} outbreak:**")
|
120 |
-
st.dataframe(outbreak_months[[
|
121 |
-
"location","year","month","temp_avg","humidity","monthly_rainfall_mm",flag_col
|
122 |
-
]])
|
123 |
else:
|
124 |
st.write(f"No months meet the {disease_choice} outbreak criteria in this selection.")
|
125 |
|
126 |
else:
|
127 |
-
#
|
128 |
-
fig = px.line(
|
129 |
-
|
130 |
-
title=f"{disease_choice} Daily Risk Over Time (2013–2024)"
|
131 |
-
)
|
132 |
fig.update_layout(yaxis_title="Risk (0–1)")
|
133 |
st.plotly_chart(fig, use_container_width=True)
|
134 |
|
|
|
135 |
col1, col2 = st.columns(2)
|
136 |
with col1:
|
137 |
-
fig_temp = px.line(
|
138 |
-
|
139 |
-
title="Daily Avg Temperature (°C)"
|
140 |
-
)
|
141 |
st.plotly_chart(fig_temp, use_container_width=True)
|
142 |
with col2:
|
143 |
-
fig_rain = px.line(
|
144 |
-
|
145 |
-
title="Daily Rainfall (mm)"
|
146 |
-
)
|
147 |
st.plotly_chart(fig_rain, use_container_width=True)
|
148 |
|
149 |
# ----------------------------------------------------
|
@@ -151,118 +145,59 @@ else:
|
|
151 |
# ----------------------------------------------------
|
152 |
st.subheader(f"Correlation Heatmap - {data_choice} Data")
|
153 |
|
|
|
154 |
if data_choice == "Monthly":
|
155 |
subset_cols = ["temp_avg", "humidity", "monthly_rainfall_mm", "malaria_risk", "dengue_risk"]
|
156 |
else:
|
157 |
subset_cols = ["temp_avg", "humidity", "daily_rainfall_mm", "malaria_risk", "dengue_risk"]
|
158 |
|
159 |
corr_df = df[subset_cols].corr()
|
160 |
-
fig_corr = px.imshow(
|
161 |
-
|
162 |
-
title="Correlation Matrix of Weather & Risk"
|
163 |
-
)
|
164 |
st.plotly_chart(fig_corr, use_container_width=True)
|
165 |
|
166 |
# ----------------------------------------------------
|
167 |
-
# 6.
|
168 |
# ----------------------------------------------------
|
169 |
st.subheader("Interactive Map")
|
170 |
st.markdown(
|
171 |
"""
|
172 |
-
**Note**: We only have 3 locations
|
173 |
-
|
174 |
"""
|
175 |
)
|
176 |
|
177 |
-
#
|
178 |
-
API_KEY = "c5b5c5ee6c497c6b1869ed926582a1ea" # <-- Your OpenWeather API key
|
179 |
-
|
180 |
-
def get_current_weather(lat, lon, api_key=API_KEY):
|
181 |
-
"""
|
182 |
-
Fetch current weather data from OpenWeather for given lat/lon.
|
183 |
-
Returns a dict with {temp, humidity, description} if successful; else None.
|
184 |
-
"""
|
185 |
-
url = f"https://api.openweathermap.org/data/2.5/weather?lat={lat}&lon={lon}&appid={api_key}&units=metric"
|
186 |
-
try:
|
187 |
-
resp = requests.get(url)
|
188 |
-
if resp.status_code == 200:
|
189 |
-
data = resp.json()
|
190 |
-
# Extract a few relevant fields:
|
191 |
-
current_temp = data["main"]["temp"]
|
192 |
-
humidity = data["main"]["humidity"]
|
193 |
-
weather_desc = data["weather"][0]["description"]
|
194 |
-
return {
|
195 |
-
"temp": current_temp,
|
196 |
-
"humidity": humidity,
|
197 |
-
"description": weather_desc
|
198 |
-
}
|
199 |
-
else:
|
200 |
-
return None
|
201 |
-
except Exception as e:
|
202 |
-
# In production, you'd handle logging or fallback here
|
203 |
-
return None
|
204 |
-
|
205 |
-
# --- 6B. Create Folium Map ---
|
206 |
m = folium.Map(location=[-6.0, 35.0], zoom_start=6)
|
207 |
|
208 |
-
|
209 |
-
outbreak_flag_col = "malaria_outbreak"
|
210 |
-
else:
|
211 |
-
outbreak_flag_col = "dengue_outbreak"
|
212 |
-
|
213 |
-
# For each location, we show both the CSV-based stats AND real-time weather
|
214 |
if data_choice == "Monthly":
|
|
|
|
|
215 |
for loc in selected_locations:
|
216 |
loc_info = LOCATIONS[loc]
|
217 |
loc_df = df[df["location"] == loc]
|
218 |
|
219 |
if loc_df.empty:
|
220 |
continue
|
221 |
-
|
222 |
-
# Averages from the CSV data
|
223 |
avg_risk = loc_df[risk_col].mean()
|
224 |
avg_temp = loc_df["temp_avg"].mean()
|
225 |
avg_rain = loc_df["monthly_rainfall_mm"].mean()
|
226 |
|
227 |
-
#
|
228 |
-
outbreak_count = loc_df[loc_df[outbreak_flag_col] == True].shape[0]
|
229 |
-
outbreak_status = "Yes" if outbreak_count > 0 else "No"
|
230 |
-
|
231 |
-
# Fetch real-time weather
|
232 |
-
weather_now = get_current_weather(loc_info["lat"], loc_info["lon"], API_KEY)
|
233 |
-
|
234 |
-
if weather_now:
|
235 |
-
rt_temp = weather_now["temp"]
|
236 |
-
rt_hum = weather_now["humidity"]
|
237 |
-
rt_desc = weather_now["description"]
|
238 |
-
else:
|
239 |
-
rt_temp = None
|
240 |
-
rt_hum = None
|
241 |
-
rt_desc = "N/A"
|
242 |
-
|
243 |
-
# Build the popup HTML
|
244 |
popup_html = f"""
|
245 |
<b>{loc}</b><br/>
|
246 |
Disease: {disease_choice}<br/>
|
247 |
-
|
248 |
-
<br/>
|
249 |
-
<u>Historical/Forecasted Averages (CSV)</u><br/>
|
250 |
-
Avg Risk (selected range): {avg_risk:.2f}<br/>
|
251 |
Avg Temp (°C): {avg_temp:.2f}<br/>
|
252 |
Avg Rainfall (mm): {avg_rain:.2f}<br/>
|
253 |
-
<br/>
|
254 |
-
<u>Real-Time Weather (OpenWeather)</u><br/>
|
255 |
-
Current Temp (°C): {rt_temp if rt_temp else 'N/A'}<br/>
|
256 |
-
Current Humidity (%): {rt_hum if rt_hum else 'N/A'}<br/>
|
257 |
-
Conditions: {rt_desc}
|
258 |
"""
|
259 |
-
|
260 |
folium.Marker(
|
261 |
location=[loc_info["lat"], loc_info["lon"]],
|
262 |
popup=popup_html,
|
263 |
tooltip=f"{loc} ({disease_choice})"
|
264 |
).add_to(m)
|
265 |
-
|
266 |
else:
|
267 |
# Daily data
|
268 |
for loc in selected_locations:
|
@@ -271,42 +206,17 @@ else:
|
|
271 |
|
272 |
if loc_df.empty:
|
273 |
continue
|
274 |
-
|
275 |
avg_risk = loc_df[risk_col].mean()
|
276 |
avg_temp = loc_df["temp_avg"].mean()
|
277 |
avg_rain = loc_df["daily_rainfall_mm"].mean()
|
278 |
|
279 |
-
# Check outbreak
|
280 |
-
outbreak_count = loc_df[loc_df[outbreak_flag_col] == True].shape[0]
|
281 |
-
outbreak_status = "Yes" if outbreak_count > 0 else "No"
|
282 |
-
|
283 |
-
# Real-time weather
|
284 |
-
weather_now = get_current_weather(loc_info["lat"], loc_info["lon"], API_KEY)
|
285 |
-
if weather_now:
|
286 |
-
rt_temp = weather_now["temp"]
|
287 |
-
rt_hum = weather_now["humidity"]
|
288 |
-
rt_desc = weather_now["description"]
|
289 |
-
else:
|
290 |
-
rt_temp = None
|
291 |
-
rt_hum = None
|
292 |
-
rt_desc = "N/A"
|
293 |
-
|
294 |
popup_html = f"""
|
295 |
<b>{loc}</b><br/>
|
296 |
Disease: {disease_choice}<br/>
|
297 |
-
|
298 |
-
<br/>
|
299 |
-
<u>Historical/Forecasted Averages (CSV)</u><br/>
|
300 |
-
Avg Risk (selected range): {avg_risk:.2f}<br/>
|
301 |
Avg Temp (°C): {avg_temp:.2f}<br/>
|
302 |
Avg Rain (mm/day): {avg_rain:.2f}<br/>
|
303 |
-
<br/>
|
304 |
-
<u>Real-Time Weather (OpenWeather)</u><br/>
|
305 |
-
Current Temp (°C): {rt_temp if rt_temp else 'N/A'}<br/>
|
306 |
-
Current Humidity (%): {rt_hum if rt_hum else 'N/A'}<br/>
|
307 |
-
Conditions: {rt_desc}
|
308 |
"""
|
309 |
-
|
310 |
folium.Marker(
|
311 |
location=[loc_info["lat"], loc_info["lon"]],
|
312 |
popup=popup_html,
|
|
|
4 |
import plotly.express as px
|
5 |
import folium
|
6 |
from streamlit_folium import st_folium
|
7 |
+
|
8 |
# ----------------------------------------------------
|
9 |
# 1. Load data
|
10 |
# ----------------------------------------------------
|
11 |
@st.cache_data
|
12 |
def load_data():
|
13 |
+
# Load daily and monthly CSV from local files (or a URL if needed)
|
14 |
daily_df = pd.read_csv("daily_data_2013_2024.csv", parse_dates=["date"])
|
15 |
monthly_df = pd.read_csv("monthly_data_2013_2024.csv")
|
16 |
+
|
17 |
+
# If monthly_df also needs a 'date' column for plotting (like first day of month), you can create:
|
18 |
+
# monthly_df["date"] = pd.to_datetime(monthly_df["year"].astype(str) + "-" + monthly_df["month"].astype(str) + "-01")
|
19 |
+
|
20 |
return daily_df, monthly_df
|
21 |
|
22 |
daily_data, monthly_data = load_data()
|
|
|
35 |
|
36 |
st.sidebar.header("Filters & Options")
|
37 |
|
38 |
+
# Choose disease type to focus on
|
39 |
disease_choice = st.sidebar.radio("Select Disease", ["Malaria", "Dengue"])
|
40 |
|
41 |
# Choose data granularity
|
|
|
45 |
location_list = list(LOCATIONS.keys())
|
46 |
selected_locations = st.sidebar.multiselect("Select Location(s)", location_list, default=location_list)
|
47 |
|
48 |
+
# For monthly data, let user select a year range
|
49 |
if data_choice == "Monthly":
|
50 |
year_min = int(monthly_data["year"].min())
|
51 |
year_max = int(monthly_data["year"].max())
|
52 |
+
year_range = st.sidebar.slider("Select Year Range",
|
53 |
+
min_value=year_min,
|
54 |
+
max_value=year_max,
|
55 |
+
value=(year_min, year_max))
|
56 |
+
# For daily data, let user select a date range
|
|
|
|
|
57 |
else:
|
58 |
date_min = daily_data["date"].min()
|
59 |
date_max = daily_data["date"].max()
|
60 |
+
date_range = st.sidebar.date_input("Select Date Range",
|
61 |
+
[date_min, date_max],
|
62 |
+
min_value=date_min,
|
63 |
+
max_value=date_max)
|
|
|
|
|
64 |
|
65 |
# ----------------------------------------------------
|
66 |
# 3. Filter data based on user input
|
67 |
# ----------------------------------------------------
|
68 |
if data_choice == "Monthly":
|
69 |
+
# Subset monthly data for selected locations
|
70 |
df = monthly_data[monthly_data["location"].isin(selected_locations)].copy()
|
71 |
# Filter year range
|
72 |
df = df[(df["year"] >= year_range[0]) & (df["year"] <= year_range[1])]
|
73 |
+
|
74 |
+
# Create a "date" column for monthly plotting (1st of each month)
|
75 |
+
# This can help create a time-series for Plotly
|
76 |
df["date"] = pd.to_datetime(df["year"].astype(str) + "-" + df["month"].astype(str) + "-01")
|
77 |
+
|
78 |
else:
|
79 |
+
# Subset daily data
|
80 |
df = daily_data[daily_data["location"].isin(selected_locations)].copy()
|
81 |
# Filter date range
|
82 |
+
df = df[(df["date"] >= pd.to_datetime(date_range[0])) & (df["date"] <= pd.to_datetime(date_range[1]))]
|
|
|
|
|
|
|
83 |
|
84 |
# ----------------------------------------------------
|
85 |
# 4. Interactive Plotly Time-Series
|
86 |
# ----------------------------------------------------
|
87 |
st.subheader(f"{data_choice} {disease_choice} Risk & Climate Parameters")
|
88 |
|
89 |
+
# Decide which columns are relevant
|
90 |
risk_col = "malaria_risk" if disease_choice == "Malaria" else "dengue_risk"
|
91 |
|
92 |
if data_choice == "Monthly":
|
93 |
+
# We'll plot a line chart of risk, temperature, and rainfall vs. date
|
94 |
+
fig = px.line(df, x="date", y=risk_col, color="location",
|
95 |
+
title=f"{disease_choice} Risk Over Time ({data_choice})")
|
|
|
96 |
fig.update_layout(yaxis_title="Risk (0–1)")
|
97 |
+
|
98 |
st.plotly_chart(fig, use_container_width=True)
|
99 |
|
100 |
+
# Optionally plot temperature / rainfall on another figure
|
101 |
col1, col2 = st.columns(2)
|
102 |
with col1:
|
103 |
+
fig_temp = px.line(df, x="date", y="temp_avg", color="location",
|
104 |
+
title="Average Temperature (°C)")
|
|
|
|
|
105 |
st.plotly_chart(fig_temp, use_container_width=True)
|
106 |
with col2:
|
107 |
+
# 'monthly_rainfall_mm' is total monthly rainfall
|
108 |
+
fig_rain = px.line(df, x="date", y="monthly_rainfall_mm", color="location",
|
109 |
+
title="Monthly Rainfall (mm)")
|
|
|
110 |
st.plotly_chart(fig_rain, use_container_width=True)
|
111 |
|
112 |
+
# Show outbreak flags if focusing on monthly
|
113 |
if disease_choice == "Malaria":
|
114 |
flag_col = "malaria_outbreak"
|
115 |
else:
|
|
|
118 |
outbreak_months = df[df[flag_col] == True]
|
119 |
if not outbreak_months.empty:
|
120 |
st.write(f"**Months with likely {disease_choice} outbreak:**")
|
121 |
+
st.dataframe(outbreak_months[["location","year","month","temp_avg","humidity","monthly_rainfall_mm",flag_col]])
|
|
|
|
|
122 |
else:
|
123 |
st.write(f"No months meet the {disease_choice} outbreak criteria in this selection.")
|
124 |
|
125 |
else:
|
126 |
+
# For daily data, plot daily risk
|
127 |
+
fig = px.line(df, x="date", y=risk_col, color="location",
|
128 |
+
title=f"{disease_choice} Daily Risk Over Time (2013–2024)")
|
|
|
|
|
129 |
fig.update_layout(yaxis_title="Risk (0–1)")
|
130 |
st.plotly_chart(fig, use_container_width=True)
|
131 |
|
132 |
+
# Similarly, temperature & daily rainfall
|
133 |
col1, col2 = st.columns(2)
|
134 |
with col1:
|
135 |
+
fig_temp = px.line(df, x="date", y="temp_avg", color="location",
|
136 |
+
title="Daily Avg Temperature (°C)")
|
|
|
|
|
137 |
st.plotly_chart(fig_temp, use_container_width=True)
|
138 |
with col2:
|
139 |
+
fig_rain = px.line(df, x="date", y="daily_rainfall_mm", color="location",
|
140 |
+
title="Daily Rainfall (mm)")
|
|
|
|
|
141 |
st.plotly_chart(fig_rain, use_container_width=True)
|
142 |
|
143 |
# ----------------------------------------------------
|
|
|
145 |
# ----------------------------------------------------
|
146 |
st.subheader(f"Correlation Heatmap - {data_choice} Data")
|
147 |
|
148 |
+
# We'll pick relevant numeric columns
|
149 |
if data_choice == "Monthly":
|
150 |
subset_cols = ["temp_avg", "humidity", "monthly_rainfall_mm", "malaria_risk", "dengue_risk"]
|
151 |
else:
|
152 |
subset_cols = ["temp_avg", "humidity", "daily_rainfall_mm", "malaria_risk", "dengue_risk"]
|
153 |
|
154 |
corr_df = df[subset_cols].corr()
|
155 |
+
fig_corr = px.imshow(corr_df, text_auto=True, aspect="auto",
|
156 |
+
title="Correlation Matrix of Weather & Risk")
|
|
|
|
|
157 |
st.plotly_chart(fig_corr, use_container_width=True)
|
158 |
|
159 |
# ----------------------------------------------------
|
160 |
+
# 6. Interactive Map (Folium)
|
161 |
# ----------------------------------------------------
|
162 |
st.subheader("Interactive Map")
|
163 |
st.markdown(
|
164 |
"""
|
165 |
+
**Note**: We only have 3 locations. Each marker popup shows some aggregated
|
166 |
+
stats for the displayed data range.
|
167 |
"""
|
168 |
)
|
169 |
|
170 |
+
# Create a base map centered roughly in Tanzania
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
m = folium.Map(location=[-6.0, 35.0], zoom_start=6)
|
172 |
|
173 |
+
# We'll show monthly or daily aggregates in the popups
|
|
|
|
|
|
|
|
|
|
|
174 |
if data_choice == "Monthly":
|
175 |
+
# For each location, let's gather monthly avg for the current df
|
176 |
+
# Then we can show a simple summary in the popup
|
177 |
for loc in selected_locations:
|
178 |
loc_info = LOCATIONS[loc]
|
179 |
loc_df = df[df["location"] == loc]
|
180 |
|
181 |
if loc_df.empty:
|
182 |
continue
|
183 |
+
# Basic stats: average risk, average rainfall, etc
|
|
|
184 |
avg_risk = loc_df[risk_col].mean()
|
185 |
avg_temp = loc_df["temp_avg"].mean()
|
186 |
avg_rain = loc_df["monthly_rainfall_mm"].mean()
|
187 |
|
188 |
+
# Build popup HTML
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
popup_html = f"""
|
190 |
<b>{loc}</b><br/>
|
191 |
Disease: {disease_choice}<br/>
|
192 |
+
Avg Risk (in selection): {avg_risk:.2f}<br/>
|
|
|
|
|
|
|
193 |
Avg Temp (°C): {avg_temp:.2f}<br/>
|
194 |
Avg Rainfall (mm): {avg_rain:.2f}<br/>
|
|
|
|
|
|
|
|
|
|
|
195 |
"""
|
|
|
196 |
folium.Marker(
|
197 |
location=[loc_info["lat"], loc_info["lon"]],
|
198 |
popup=popup_html,
|
199 |
tooltip=f"{loc} ({disease_choice})"
|
200 |
).add_to(m)
|
|
|
201 |
else:
|
202 |
# Daily data
|
203 |
for loc in selected_locations:
|
|
|
206 |
|
207 |
if loc_df.empty:
|
208 |
continue
|
|
|
209 |
avg_risk = loc_df[risk_col].mean()
|
210 |
avg_temp = loc_df["temp_avg"].mean()
|
211 |
avg_rain = loc_df["daily_rainfall_mm"].mean()
|
212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
popup_html = f"""
|
214 |
<b>{loc}</b><br/>
|
215 |
Disease: {disease_choice}<br/>
|
216 |
+
Avg Risk (in selection): {avg_risk:.2f}<br/>
|
|
|
|
|
|
|
217 |
Avg Temp (°C): {avg_temp:.2f}<br/>
|
218 |
Avg Rain (mm/day): {avg_rain:.2f}<br/>
|
|
|
|
|
|
|
|
|
|
|
219 |
"""
|
|
|
220 |
folium.Marker(
|
221 |
location=[loc_info["lat"], loc_info["lon"]],
|
222 |
popup=popup_html,
|