AI_FOR_DISABLED / app.py
jobsm's picture
Update app.py
16b1520 verified
import gradio as gr
import whisper
from transformers import pipeline
import requests
import cv2
import string
import numpy as np
import tensorflow as tf
import edge_tts
import asyncio
import tempfile
# Load models
whisper_model = whisper.load_model("base")
sentiment_analysis = pipeline(
"sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions"
)
def load_sign_language_model():
return tf.keras.models.load_model("best_model.h5")
sign_language_model = load_sign_language_model()
# Get available voices asynchronously
async def get_voices():
voices = await edge_tts.list_voices()
return {
f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v["ShortName"]
for v in voices
}
# Audio-based functions
def analyze_sentiment(text):
results = sentiment_analysis(text)
return {result["label"]: result["score"] for result in results}
def display_sentiment_results(sentiment_results, option):
return "\n".join(
f"{sentiment}: {score:.2f}" if option == "Sentiment + Score" else sentiment
for sentiment, score in sentiment_results.items()
)
def search_text(text, api_key):
api_endpoint = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
headers = {"Content-Type": "application/json"}
payload = {"contents": [{"parts": [{"text": text}]}]}
try:
response = requests.post(api_endpoint, headers=headers, json=payload, params={"key": api_key})
response.raise_for_status()
response_json = response.json()
if "candidates" in response_json and response_json["candidates"]:
content_parts = response_json["candidates"][0]["content"]["parts"]
return content_parts[0]["text"].strip() if content_parts else "No relevant content found."
except requests.exceptions.RequestException as e:
return f"Error: {str(e)}"
return "No relevant content found."
async def text_to_speech(text, voice, rate, pitch):
if not isinstance(text, str) or not text.strip():
return None, gr.Warning("Please enter valid text to convert.")
if not voice:
return None, gr.Warning("Please select a voice.")
voice_short_name = voice.split(" - ")[0]
communicate = edge_tts.Communicate(text, voice_short_name, rate=f"{rate:+d}%", pitch=f"{pitch:+d}Hz")
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
await communicate.save(tmp_file.name)
return tmp_file.name, None
async def tts_interface(text, voice, rate, pitch):
return await text_to_speech(text, voice, rate, pitch)
async def inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch):
if audio is None:
return "No audio file provided.", "", "", "", None
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
_, probs = whisper_model.detect_language(mel)
lang = max(probs, key=probs.get)
result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False))
sentiment_results = analyze_sentiment(result.text)
sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)
search_results = search_text(result.text, api_key)
if not isinstance(search_results, str):
search_results = "Error processing text."
explanation_audio, _ = await tts_interface(search_results, tts_voice, tts_rate, tts_pitch)
return lang.upper(), result.text, sentiment_output, search_results, explanation_audio
async def classify_sign_language(image, api_key):
img = np.array(image)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_img = cv2.resize(gray_img, (28, 28))
input_img = np.expand_dims(gray_img / 255.0, axis=0)
output = np.argmax(sign_language_model.predict(input_img), axis=1).item()
output = output + 1 if output > 7 else output
pred = string.ascii_uppercase[output]
explanation = search_text(f"Explain the American Sign Language letter '{pred}'.", api_key)
if not isinstance(explanation, str):
explanation = "Error processing explanation."
explanation_audio, _ = await tts_interface(explanation, None, 0, 0)
return pred, explanation, explanation_audio
async def process_input(input_type, audio=None, image=None, sentiment_option=None, api_key=None, tts_voice=None, tts_rate=0, tts_pitch=0):
return await inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch) if input_type == "Audio" else await classify_sign_language(image, api_key)
async def main():
voices = await get_voices()
with gr.Blocks() as demo:
gr.Markdown("# Speak & Sign AI Assistant")
input_type = gr.Radio(label="Choose Input Type", choices=["Audio", "Image"], value="Audio")
api_key_input = gr.Textbox(label="API Key", type="password")
audio_input = gr.Audio(label="Upload Audio", type="filepath")
sentiment_option = gr.Radio(choices=["Sentiment Only", "Sentiment + Score"], label="Sentiment Output", value="Sentiment Only")
image_input = gr.Image(label="Upload Image", type="pil", visible=False)
tts_voice = gr.Dropdown(label="Select Voice", choices=[""] + list(voices.keys()), value="")
tts_rate = gr.Slider(-50, 50, value=0, label="Speech Rate (%)")
tts_pitch = gr.Slider(-20, 20, value=0, label="Pitch (Hz)")
submit_btn = gr.Button("Submit")
lang_str, text, sentiment_output, search_results, audio_output = [gr.Textbox(interactive=False) for _ in range(5)]
submit_btn.click(process_input, [input_type, audio_input, image_input, sentiment_option, api_key_input, tts_voice, tts_rate, tts_pitch], [lang_str, text, sentiment_output, search_results, audio_output])
demo.launch(share=True)
asyncio.run(main())