File size: 5,928 Bytes
d1c1b86
 
 
 
 
 
 
 
1d38dc5
 
 
d1c1b86
 
 
 
0c0dfca
 
d1c1b86
 
0c0dfca
d1c1b86
 
 
0c0dfca
1d38dc5
 
0c0dfca
 
 
 
1d38dc5
d1c1b86
 
 
16b1520
d1c1b86
 
16b1520
 
 
 
d1c1b86
 
 
 
 
16b1520
d1c1b86
0c0dfca
d1c1b86
 
0c0dfca
 
16b1520
d1c1b86
16b1520
 
d1c1b86
1d38dc5
16b1520
 
1d38dc5
 
 
 
16b1520
0c0dfca
1d38dc5
16b1520
0c0dfca
16b1520
1d38dc5
 
0c0dfca
1d38dc5
0c0dfca
d1c1b86
1d38dc5
d1c1b86
 
 
 
 
 
 
 
16b1520
d1c1b86
0c0dfca
16b1520
d1c1b86
16b1520
 
 
d1c1b86
0c0dfca
16b1520
1d38dc5
d1c1b86
0c0dfca
d1c1b86
 
 
16b1520
 
 
d1c1b86
16b1520
 
0c0dfca
16b1520
 
 
0c0dfca
16b1520
0c0dfca
d1c1b86
0c0dfca
16b1520
d1c1b86
1d38dc5
 
d1c1b86
1d38dc5
16b1520
 
 
 
 
 
 
 
 
 
 
d1c1b86
b14b11b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr
import whisper
from transformers import pipeline
import requests
import cv2
import string
import numpy as np
import tensorflow as tf
import edge_tts
import asyncio
import tempfile

# Load models
whisper_model = whisper.load_model("base")
sentiment_analysis = pipeline(
    "sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions"
)

def load_sign_language_model():
    return tf.keras.models.load_model("best_model.h5")

sign_language_model = load_sign_language_model()

# Get available voices asynchronously
async def get_voices():
    voices = await edge_tts.list_voices()
    return {
        f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v["ShortName"]
        for v in voices
    }

# Audio-based functions
def analyze_sentiment(text):
    results = sentiment_analysis(text)
    return {result["label"]: result["score"] for result in results}

def display_sentiment_results(sentiment_results, option):
    return "\n".join(
        f"{sentiment}: {score:.2f}" if option == "Sentiment + Score" else sentiment
        for sentiment, score in sentiment_results.items()
    )

def search_text(text, api_key):
    api_endpoint = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
    headers = {"Content-Type": "application/json"}
    payload = {"contents": [{"parts": [{"text": text}]}]}
    
    try:
        response = requests.post(api_endpoint, headers=headers, json=payload, params={"key": api_key})
        response.raise_for_status()
        response_json = response.json()
        if "candidates" in response_json and response_json["candidates"]:
            content_parts = response_json["candidates"][0]["content"]["parts"]
            return content_parts[0]["text"].strip() if content_parts else "No relevant content found."
    except requests.exceptions.RequestException as e:
        return f"Error: {str(e)}"
    return "No relevant content found."

async def text_to_speech(text, voice, rate, pitch):
    if not isinstance(text, str) or not text.strip():
        return None, gr.Warning("Please enter valid text to convert.")
    if not voice:
        return None, gr.Warning("Please select a voice.")

    voice_short_name = voice.split(" - ")[0]
    communicate = edge_tts.Communicate(text, voice_short_name, rate=f"{rate:+d}%", pitch=f"{pitch:+d}Hz")
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
        await communicate.save(tmp_file.name)
    
    return tmp_file.name, None

async def tts_interface(text, voice, rate, pitch):
    return await text_to_speech(text, voice, rate, pitch)

async def inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch):
    if audio is None:
        return "No audio file provided.", "", "", "", None

    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)
    mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)

    _, probs = whisper_model.detect_language(mel)
    lang = max(probs, key=probs.get)

    result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False))
    sentiment_results = analyze_sentiment(result.text)
    sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)
    
    search_results = search_text(result.text, api_key)
    
    if not isinstance(search_results, str):
        search_results = "Error processing text."

    explanation_audio, _ = await tts_interface(search_results, tts_voice, tts_rate, tts_pitch)
    
    return lang.upper(), result.text, sentiment_output, search_results, explanation_audio

async def classify_sign_language(image, api_key):
    img = np.array(image)
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray_img = cv2.resize(gray_img, (28, 28))
    input_img = np.expand_dims(gray_img / 255.0, axis=0)
    
    output = np.argmax(sign_language_model.predict(input_img), axis=1).item()
    output = output + 1 if output > 7 else output
    pred = string.ascii_uppercase[output]
    
    explanation = search_text(f"Explain the American Sign Language letter '{pred}'.", api_key)
    if not isinstance(explanation, str):
        explanation = "Error processing explanation."
    
    explanation_audio, _ = await tts_interface(explanation, None, 0, 0)
    
    return pred, explanation, explanation_audio

async def process_input(input_type, audio=None, image=None, sentiment_option=None, api_key=None, tts_voice=None, tts_rate=0, tts_pitch=0):
    return await inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch) if input_type == "Audio" else await classify_sign_language(image, api_key)

async def main():
    voices = await get_voices()
    with gr.Blocks() as demo:
        gr.Markdown("# Speak & Sign AI Assistant")
        input_type = gr.Radio(label="Choose Input Type", choices=["Audio", "Image"], value="Audio")
        api_key_input = gr.Textbox(label="API Key", type="password")
        audio_input = gr.Audio(label="Upload Audio", type="filepath")
        sentiment_option = gr.Radio(choices=["Sentiment Only", "Sentiment + Score"], label="Sentiment Output", value="Sentiment Only")
        image_input = gr.Image(label="Upload Image", type="pil", visible=False)
        tts_voice = gr.Dropdown(label="Select Voice", choices=[""] + list(voices.keys()), value="")
        tts_rate = gr.Slider(-50, 50, value=0, label="Speech Rate (%)")
        tts_pitch = gr.Slider(-20, 20, value=0, label="Pitch (Hz)")
        submit_btn = gr.Button("Submit")
        lang_str, text, sentiment_output, search_results, audio_output = [gr.Textbox(interactive=False) for _ in range(5)]
        submit_btn.click(process_input, [input_type, audio_input, image_input, sentiment_option, api_key_input, tts_voice, tts_rate, tts_pitch], [lang_str, text, sentiment_output, search_results, audio_output])
    demo.launch(share=True)
asyncio.run(main())