Spaces:
Running
Running
jhj0517
commited on
Commit
·
e76c01c
1
Parent(s):
b72fd8a
refactor base abstract class for whisper
Browse files- modules/faster_whisper_inference.py +5 -284
- modules/whisper_Inference.py +7 -283
modules/faster_whisper_inference.py
CHANGED
@@ -2,233 +2,30 @@ import os
|
|
2 |
import time
|
3 |
import numpy as np
|
4 |
from typing import BinaryIO, Union, Tuple, List
|
5 |
-
from datetime import datetime
|
6 |
|
7 |
import faster_whisper
|
8 |
from faster_whisper.vad import VadOptions
|
9 |
import ctranslate2
|
10 |
import whisper
|
11 |
-
import torch
|
12 |
import gradio as gr
|
13 |
|
14 |
-
from .base_interface import BaseInterface
|
15 |
-
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
16 |
-
from modules.youtube_manager import get_ytdata, get_ytaudio
|
17 |
from modules.whisper_parameter import *
|
|
|
18 |
|
19 |
# Temporal fix of the issue : https://github.com/jhj0517/Whisper-WebUI/issues/144
|
20 |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
21 |
|
22 |
|
23 |
-
class FasterWhisperInference(
|
24 |
def __init__(self):
|
25 |
-
super().__init__(
|
|
|
|
|
26 |
self.model_dir = os.path.join("models", "Whisper", "faster-whisper")
|
27 |
-
os.makedirs(self.model_dir, exist_ok=True)
|
28 |
-
self.current_model_size = None
|
29 |
-
self.model = None
|
30 |
self.model_paths = self.get_model_paths()
|
31 |
self.available_models = self.model_paths.keys()
|
32 |
-
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
33 |
-
self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
|
34 |
-
if torch.cuda.is_available():
|
35 |
-
self.device = "cuda"
|
36 |
-
elif torch.backends.mps.is_available():
|
37 |
-
self.device = "mps"
|
38 |
-
else:
|
39 |
-
self.device = "cpu"
|
40 |
self.available_compute_types = ctranslate2.get_supported_compute_types(
|
41 |
"cuda") if self.device == "cuda" else ctranslate2.get_supported_compute_types("cpu")
|
42 |
-
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
|
43 |
-
|
44 |
-
def transcribe_file(self,
|
45 |
-
files: list,
|
46 |
-
file_format: str,
|
47 |
-
add_timestamp: bool,
|
48 |
-
progress=gr.Progress(),
|
49 |
-
*whisper_params,
|
50 |
-
) -> list:
|
51 |
-
"""
|
52 |
-
Write subtitle file from Files
|
53 |
-
|
54 |
-
Parameters
|
55 |
-
----------
|
56 |
-
files: list
|
57 |
-
List of files to transcribe from gr.Files()
|
58 |
-
file_format: str
|
59 |
-
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
60 |
-
add_timestamp: bool
|
61 |
-
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
|
62 |
-
progress: gr.Progress
|
63 |
-
Indicator to show progress directly in gradio.
|
64 |
-
*whisper_params: tuple
|
65 |
-
Gradio components related to Whisper. see whisper_data_class.py for details.
|
66 |
-
|
67 |
-
Returns
|
68 |
-
----------
|
69 |
-
result_str:
|
70 |
-
Result of transcription to return to gr.Textbox()
|
71 |
-
result_file_path:
|
72 |
-
Output file path to return to gr.Files()
|
73 |
-
"""
|
74 |
-
try:
|
75 |
-
files_info = {}
|
76 |
-
for file in files:
|
77 |
-
transcribed_segments, time_for_task = self.transcribe(
|
78 |
-
file.name,
|
79 |
-
progress,
|
80 |
-
*whisper_params,
|
81 |
-
)
|
82 |
-
|
83 |
-
file_name, file_ext = os.path.splitext(os.path.basename(file.name))
|
84 |
-
file_name = safe_filename(file_name)
|
85 |
-
subtitle, file_path = self.generate_and_write_file(
|
86 |
-
file_name=file_name,
|
87 |
-
transcribed_segments=transcribed_segments,
|
88 |
-
add_timestamp=add_timestamp,
|
89 |
-
file_format=file_format
|
90 |
-
)
|
91 |
-
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task, "path": file_path}
|
92 |
-
|
93 |
-
total_result = ''
|
94 |
-
total_time = 0
|
95 |
-
for file_name, info in files_info.items():
|
96 |
-
total_result += '------------------------------------\n'
|
97 |
-
total_result += f'{file_name}\n\n'
|
98 |
-
total_result += f'{info["subtitle"]}'
|
99 |
-
total_time += info["time_for_task"]
|
100 |
-
|
101 |
-
result_str = f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
|
102 |
-
result_file_path = [info['path'] for info in files_info.values()]
|
103 |
-
|
104 |
-
return [result_str, result_file_path]
|
105 |
-
|
106 |
-
except Exception as e:
|
107 |
-
print(f"Error transcribing file: {e}")
|
108 |
-
finally:
|
109 |
-
self.release_cuda_memory()
|
110 |
-
if not files:
|
111 |
-
self.remove_input_files([file.name for file in files])
|
112 |
-
|
113 |
-
def transcribe_youtube(self,
|
114 |
-
youtube_link: str,
|
115 |
-
file_format: str,
|
116 |
-
add_timestamp: bool,
|
117 |
-
progress=gr.Progress(),
|
118 |
-
*whisper_params,
|
119 |
-
) -> list:
|
120 |
-
"""
|
121 |
-
Write subtitle file from Youtube
|
122 |
-
|
123 |
-
Parameters
|
124 |
-
----------
|
125 |
-
youtube_link: str
|
126 |
-
URL of the Youtube video to transcribe from gr.Textbox()
|
127 |
-
file_format: str
|
128 |
-
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
129 |
-
add_timestamp: bool
|
130 |
-
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
131 |
-
progress: gr.Progress
|
132 |
-
Indicator to show progress directly in gradio.
|
133 |
-
*whisper_params: tuple
|
134 |
-
Gradio components related to Whisper. see whisper_data_class.py for details.
|
135 |
-
|
136 |
-
Returns
|
137 |
-
----------
|
138 |
-
result_str:
|
139 |
-
Result of transcription to return to gr.Textbox()
|
140 |
-
result_file_path:
|
141 |
-
Output file path to return to gr.Files()
|
142 |
-
"""
|
143 |
-
try:
|
144 |
-
progress(0, desc="Loading Audio from Youtube..")
|
145 |
-
yt = get_ytdata(youtube_link)
|
146 |
-
audio = get_ytaudio(yt)
|
147 |
-
|
148 |
-
transcribed_segments, time_for_task = self.transcribe(
|
149 |
-
audio,
|
150 |
-
progress,
|
151 |
-
*whisper_params,
|
152 |
-
)
|
153 |
-
|
154 |
-
progress(1, desc="Completed!")
|
155 |
-
|
156 |
-
file_name = safe_filename(yt.title)
|
157 |
-
subtitle, result_file_path = self.generate_and_write_file(
|
158 |
-
file_name=file_name,
|
159 |
-
transcribed_segments=transcribed_segments,
|
160 |
-
add_timestamp=add_timestamp,
|
161 |
-
file_format=file_format
|
162 |
-
)
|
163 |
-
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
164 |
-
|
165 |
-
return [result_str, result_file_path]
|
166 |
-
|
167 |
-
except Exception as e:
|
168 |
-
print(f"Error transcribing file: {e}")
|
169 |
-
finally:
|
170 |
-
try:
|
171 |
-
if 'yt' not in locals():
|
172 |
-
yt = get_ytdata(youtube_link)
|
173 |
-
file_path = get_ytaudio(yt)
|
174 |
-
else:
|
175 |
-
file_path = get_ytaudio(yt)
|
176 |
-
|
177 |
-
self.release_cuda_memory()
|
178 |
-
self.remove_input_files([file_path])
|
179 |
-
except Exception as cleanup_error:
|
180 |
-
pass
|
181 |
-
|
182 |
-
def transcribe_mic(self,
|
183 |
-
mic_audio: str,
|
184 |
-
file_format: str,
|
185 |
-
progress=gr.Progress(),
|
186 |
-
*whisper_params,
|
187 |
-
) -> list:
|
188 |
-
"""
|
189 |
-
Write subtitle file from microphone
|
190 |
-
|
191 |
-
Parameters
|
192 |
-
----------
|
193 |
-
mic_audio: str
|
194 |
-
Audio file path from gr.Microphone()
|
195 |
-
file_format: str
|
196 |
-
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
197 |
-
progress: gr.Progress
|
198 |
-
Indicator to show progress directly in gradio.
|
199 |
-
*whisper_params: tuple
|
200 |
-
Gradio components related to Whisper. see whisper_data_class.py for details.
|
201 |
-
|
202 |
-
Returns
|
203 |
-
----------
|
204 |
-
result_str:
|
205 |
-
Result of transcription to return to gr.Textbox()
|
206 |
-
result_file_path:
|
207 |
-
Output file path to return to gr.Files()
|
208 |
-
"""
|
209 |
-
try:
|
210 |
-
progress(0, desc="Loading Audio..")
|
211 |
-
transcribed_segments, time_for_task = self.transcribe(
|
212 |
-
mic_audio,
|
213 |
-
progress,
|
214 |
-
*whisper_params,
|
215 |
-
)
|
216 |
-
progress(1, desc="Completed!")
|
217 |
-
|
218 |
-
subtitle, result_file_path = self.generate_and_write_file(
|
219 |
-
file_name="Mic",
|
220 |
-
transcribed_segments=transcribed_segments,
|
221 |
-
add_timestamp=True,
|
222 |
-
file_format=file_format
|
223 |
-
)
|
224 |
-
|
225 |
-
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
226 |
-
return [result_str, result_file_path]
|
227 |
-
except Exception as e:
|
228 |
-
print(f"Error transcribing file: {e}")
|
229 |
-
finally:
|
230 |
-
self.release_cuda_memory()
|
231 |
-
self.remove_input_files([mic_audio])
|
232 |
|
233 |
def transcribe(self,
|
234 |
audio: Union[str, BinaryIO, np.ndarray],
|
@@ -356,79 +153,3 @@ class FasterWhisperInference(BaseInterface):
|
|
356 |
if model_name not in whisper.available_models():
|
357 |
model_paths[model_name] = os.path.join(webui_dir, self.model_dir, model_name)
|
358 |
return model_paths
|
359 |
-
|
360 |
-
@staticmethod
|
361 |
-
def generate_and_write_file(file_name: str,
|
362 |
-
transcribed_segments: list,
|
363 |
-
add_timestamp: bool,
|
364 |
-
file_format: str,
|
365 |
-
) -> str:
|
366 |
-
"""
|
367 |
-
Writes subtitle file
|
368 |
-
|
369 |
-
Parameters
|
370 |
-
----------
|
371 |
-
file_name: str
|
372 |
-
Output file name
|
373 |
-
transcribed_segments: list
|
374 |
-
Text segments transcribed from audio
|
375 |
-
add_timestamp: bool
|
376 |
-
Determines whether to add a timestamp to the end of the filename.
|
377 |
-
file_format: str
|
378 |
-
File format to write. Supported formats: [SRT, WebVTT, txt]
|
379 |
-
|
380 |
-
Returns
|
381 |
-
----------
|
382 |
-
content: str
|
383 |
-
Result of the transcription
|
384 |
-
output_path: str
|
385 |
-
output file path
|
386 |
-
"""
|
387 |
-
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
388 |
-
if add_timestamp:
|
389 |
-
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
|
390 |
-
else:
|
391 |
-
output_path = os.path.join("outputs", f"{file_name}")
|
392 |
-
|
393 |
-
if file_format == "SRT":
|
394 |
-
content = get_srt(transcribed_segments)
|
395 |
-
output_path += '.srt'
|
396 |
-
write_file(content, output_path)
|
397 |
-
|
398 |
-
elif file_format == "WebVTT":
|
399 |
-
content = get_vtt(transcribed_segments)
|
400 |
-
output_path += '.vtt'
|
401 |
-
write_file(content, output_path)
|
402 |
-
|
403 |
-
elif file_format == "txt":
|
404 |
-
content = get_txt(transcribed_segments)
|
405 |
-
output_path += '.txt'
|
406 |
-
write_file(content, output_path)
|
407 |
-
return content, output_path
|
408 |
-
|
409 |
-
@staticmethod
|
410 |
-
def format_time(elapsed_time: float) -> str:
|
411 |
-
"""
|
412 |
-
Get {hours} {minutes} {seconds} time format string
|
413 |
-
|
414 |
-
Parameters
|
415 |
-
----------
|
416 |
-
elapsed_time: str
|
417 |
-
Elapsed time for transcription
|
418 |
-
|
419 |
-
Returns
|
420 |
-
----------
|
421 |
-
Time format string
|
422 |
-
"""
|
423 |
-
hours, rem = divmod(elapsed_time, 3600)
|
424 |
-
minutes, seconds = divmod(rem, 60)
|
425 |
-
|
426 |
-
time_str = ""
|
427 |
-
if hours:
|
428 |
-
time_str += f"{hours} hours "
|
429 |
-
if minutes:
|
430 |
-
time_str += f"{minutes} minutes "
|
431 |
-
seconds = round(seconds)
|
432 |
-
time_str += f"{seconds} seconds"
|
433 |
-
|
434 |
-
return time_str.strip()
|
|
|
2 |
import time
|
3 |
import numpy as np
|
4 |
from typing import BinaryIO, Union, Tuple, List
|
|
|
5 |
|
6 |
import faster_whisper
|
7 |
from faster_whisper.vad import VadOptions
|
8 |
import ctranslate2
|
9 |
import whisper
|
|
|
10 |
import gradio as gr
|
11 |
|
|
|
|
|
|
|
12 |
from modules.whisper_parameter import *
|
13 |
+
from modules.whisper_base import WhisperBase
|
14 |
|
15 |
# Temporal fix of the issue : https://github.com/jhj0517/Whisper-WebUI/issues/144
|
16 |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
17 |
|
18 |
|
19 |
+
class FasterWhisperInference(WhisperBase):
|
20 |
def __init__(self):
|
21 |
+
super().__init__(
|
22 |
+
model_dir=os.path.join("models", "Whisper", "faster-whisper")
|
23 |
+
)
|
24 |
self.model_dir = os.path.join("models", "Whisper", "faster-whisper")
|
|
|
|
|
|
|
25 |
self.model_paths = self.get_model_paths()
|
26 |
self.available_models = self.model_paths.keys()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
self.available_compute_types = ctranslate2.get_supported_compute_types(
|
28 |
"cuda") if self.device == "cuda" else ctranslate2.get_supported_compute_types("cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def transcribe(self,
|
31 |
audio: Union[str, BinaryIO, np.ndarray],
|
|
|
153 |
if model_name not in whisper.available_models():
|
154 |
model_paths[model_name] = os.path.join(webui_dir, self.model_dir, model_name)
|
155 |
return model_paths
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/whisper_Inference.py
CHANGED
@@ -4,217 +4,17 @@ import time
|
|
4 |
import os
|
5 |
from typing import BinaryIO, Union, Tuple, List
|
6 |
import numpy as np
|
7 |
-
from datetime import datetime
|
8 |
import torch
|
9 |
|
10 |
-
from .
|
11 |
-
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
12 |
-
from modules.youtube_manager import get_ytdata, get_ytaudio
|
13 |
from modules.whisper_parameter import *
|
14 |
|
15 |
-
DEFAULT_MODEL_SIZE = "large-v3"
|
16 |
|
17 |
-
|
18 |
-
class WhisperInference(BaseInterface):
|
19 |
def __init__(self):
|
20 |
-
super().__init__(
|
21 |
-
|
22 |
-
|
23 |
-
self.available_models = whisper.available_models()
|
24 |
-
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
25 |
-
self.translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
|
26 |
-
if torch.cuda.is_available():
|
27 |
-
self.device = "cuda"
|
28 |
-
elif torch.backends.mps.is_available():
|
29 |
-
self.device = "mps"
|
30 |
-
else:
|
31 |
-
self.device = "cpu"
|
32 |
-
self.available_compute_types = ["float16", "float32"]
|
33 |
-
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
|
34 |
-
self.model_dir = os.path.join("models", "Whisper")
|
35 |
-
|
36 |
-
def transcribe_file(self,
|
37 |
-
files: list,
|
38 |
-
file_format: str,
|
39 |
-
add_timestamp: bool,
|
40 |
-
progress=gr.Progress(),
|
41 |
-
*whisper_params
|
42 |
-
) -> list:
|
43 |
-
"""
|
44 |
-
Write subtitle file from Files
|
45 |
-
|
46 |
-
Parameters
|
47 |
-
----------
|
48 |
-
files: list
|
49 |
-
List of files to transcribe from gr.Files()
|
50 |
-
file_format: str
|
51 |
-
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
52 |
-
add_timestamp: bool
|
53 |
-
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
|
54 |
-
progress: gr.Progress
|
55 |
-
Indicator to show progress directly in gradio.
|
56 |
-
*whisper_params: tuple
|
57 |
-
Gradio components related to Whisper. see whisper_data_class.py for details.
|
58 |
-
|
59 |
-
Returns
|
60 |
-
----------
|
61 |
-
result_str:
|
62 |
-
Result of transcription to return to gr.Textbox()
|
63 |
-
result_file_path:
|
64 |
-
Output file path to return to gr.Files()
|
65 |
-
"""
|
66 |
-
try:
|
67 |
-
files_info = {}
|
68 |
-
for file in files:
|
69 |
-
progress(0, desc="Loading Audio..")
|
70 |
-
audio = whisper.load_audio(file.name)
|
71 |
-
|
72 |
-
result, elapsed_time = self.transcribe(audio,
|
73 |
-
progress,
|
74 |
-
*whisper_params)
|
75 |
-
progress(1, desc="Completed!")
|
76 |
-
|
77 |
-
file_name, file_ext = os.path.splitext(os.path.basename(file.name))
|
78 |
-
file_name = safe_filename(file_name)
|
79 |
-
subtitle, file_path = self.generate_and_write_file(
|
80 |
-
file_name=file_name,
|
81 |
-
transcribed_segments=result,
|
82 |
-
add_timestamp=add_timestamp,
|
83 |
-
file_format=file_format
|
84 |
-
)
|
85 |
-
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time, "path": file_path}
|
86 |
-
|
87 |
-
total_result = ''
|
88 |
-
total_time = 0
|
89 |
-
for file_name, info in files_info.items():
|
90 |
-
total_result += '------------------------------------\n'
|
91 |
-
total_result += f'{file_name}\n\n'
|
92 |
-
total_result += f"{info['subtitle']}"
|
93 |
-
total_time += info["elapsed_time"]
|
94 |
-
|
95 |
-
result_str = f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
|
96 |
-
result_file_path = [info['path'] for info in files_info.values()]
|
97 |
-
|
98 |
-
return [result_str, result_file_path]
|
99 |
-
except Exception as e:
|
100 |
-
print(f"Error transcribing file: {str(e)}")
|
101 |
-
finally:
|
102 |
-
self.release_cuda_memory()
|
103 |
-
self.remove_input_files([file.name for file in files])
|
104 |
-
|
105 |
-
def transcribe_youtube(self,
|
106 |
-
youtube_link: str,
|
107 |
-
file_format: str,
|
108 |
-
add_timestamp: bool,
|
109 |
-
progress=gr.Progress(),
|
110 |
-
*whisper_params) -> list:
|
111 |
-
"""
|
112 |
-
Write subtitle file from Youtube
|
113 |
-
|
114 |
-
Parameters
|
115 |
-
----------
|
116 |
-
youtube_link: str
|
117 |
-
URL of the Youtube video to transcribe from gr.Textbox()
|
118 |
-
file_format: str
|
119 |
-
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
120 |
-
add_timestamp: bool
|
121 |
-
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
122 |
-
progress: gr.Progress
|
123 |
-
Indicator to show progress directly in gradio.
|
124 |
-
*whisper_params: tuple
|
125 |
-
Gradio components related to Whisper. see whisper_data_class.py for details.
|
126 |
-
|
127 |
-
Returns
|
128 |
-
----------
|
129 |
-
result_str:
|
130 |
-
Result of transcription to return to gr.Textbox()
|
131 |
-
result_file_path:
|
132 |
-
Output file path to return to gr.Files()
|
133 |
-
"""
|
134 |
-
try:
|
135 |
-
progress(0, desc="Loading Audio from Youtube..")
|
136 |
-
yt = get_ytdata(youtube_link)
|
137 |
-
audio = whisper.load_audio(get_ytaudio(yt))
|
138 |
-
|
139 |
-
result, elapsed_time = self.transcribe(audio,
|
140 |
-
progress,
|
141 |
-
*whisper_params)
|
142 |
-
progress(1, desc="Completed!")
|
143 |
-
|
144 |
-
file_name = safe_filename(yt.title)
|
145 |
-
subtitle, result_file_path = self.generate_and_write_file(
|
146 |
-
file_name=file_name,
|
147 |
-
transcribed_segments=result,
|
148 |
-
add_timestamp=add_timestamp,
|
149 |
-
file_format=file_format
|
150 |
-
)
|
151 |
-
|
152 |
-
result_str = f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
153 |
-
return [result_str, result_file_path]
|
154 |
-
except Exception as e:
|
155 |
-
print(f"Error transcribing youtube video: {str(e)}")
|
156 |
-
finally:
|
157 |
-
try:
|
158 |
-
if 'yt' not in locals():
|
159 |
-
yt = get_ytdata(youtube_link)
|
160 |
-
file_path = get_ytaudio(yt)
|
161 |
-
else:
|
162 |
-
file_path = get_ytaudio(yt)
|
163 |
-
|
164 |
-
self.release_cuda_memory()
|
165 |
-
self.remove_input_files([file_path])
|
166 |
-
except Exception as cleanup_error:
|
167 |
-
pass
|
168 |
-
|
169 |
-
def transcribe_mic(self,
|
170 |
-
mic_audio: str,
|
171 |
-
file_format: str,
|
172 |
-
progress=gr.Progress(),
|
173 |
-
*whisper_params) -> list:
|
174 |
-
"""
|
175 |
-
Write subtitle file from microphone
|
176 |
-
|
177 |
-
Parameters
|
178 |
-
----------
|
179 |
-
mic_audio: str
|
180 |
-
Audio file path from gr.Microphone()
|
181 |
-
file_format: str
|
182 |
-
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
183 |
-
progress: gr.Progress
|
184 |
-
Indicator to show progress directly in gradio.
|
185 |
-
*whisper_params: tuple
|
186 |
-
Gradio components related to Whisper. see whisper_data_class.py for details.
|
187 |
-
|
188 |
-
Returns
|
189 |
-
----------
|
190 |
-
result_str:
|
191 |
-
Result of transcription to return to gr.Textbox()
|
192 |
-
result_file_path:
|
193 |
-
Output file path to return to gr.Files()
|
194 |
-
"""
|
195 |
-
try:
|
196 |
-
progress(0, desc="Loading Audio..")
|
197 |
-
result, elapsed_time = self.transcribe(
|
198 |
-
mic_audio,
|
199 |
-
progress,
|
200 |
-
*whisper_params,
|
201 |
-
)
|
202 |
-
progress(1, desc="Completed!")
|
203 |
-
|
204 |
-
subtitle, result_file_path = self.generate_and_write_file(
|
205 |
-
file_name="Mic",
|
206 |
-
transcribed_segments=result,
|
207 |
-
add_timestamp=True,
|
208 |
-
file_format=file_format
|
209 |
-
)
|
210 |
-
|
211 |
-
result_str = f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
212 |
-
return [result_str, result_file_path]
|
213 |
-
except Exception as e:
|
214 |
-
print(f"Error transcribing mic: {str(e)}")
|
215 |
-
finally:
|
216 |
-
self.release_cuda_memory()
|
217 |
-
self.remove_input_files([mic_audio])
|
218 |
|
219 |
def transcribe(self,
|
220 |
audio: Union[str, np.ndarray, torch.Tensor],
|
@@ -258,7 +58,7 @@ class WhisperInference(BaseInterface):
|
|
258 |
beam_size=params.beam_size,
|
259 |
logprob_threshold=params.log_prob_threshold,
|
260 |
no_speech_threshold=params.no_speech_threshold,
|
261 |
-
task="translate" if params.is_translate and self.current_model_size in self.
|
262 |
fp16=True if params.compute_type == "float16" else False,
|
263 |
best_of=params.best_of,
|
264 |
patience=params.patience,
|
@@ -294,80 +94,4 @@ class WhisperInference(BaseInterface):
|
|
294 |
name=model_size,
|
295 |
device=self.device,
|
296 |
download_root=self.model_dir
|
297 |
-
)
|
298 |
-
|
299 |
-
@staticmethod
|
300 |
-
def generate_and_write_file(file_name: str,
|
301 |
-
transcribed_segments: list,
|
302 |
-
add_timestamp: bool,
|
303 |
-
file_format: str,
|
304 |
-
) -> str:
|
305 |
-
"""
|
306 |
-
Writes subtitle file
|
307 |
-
|
308 |
-
Parameters
|
309 |
-
----------
|
310 |
-
file_name: str
|
311 |
-
Output file name
|
312 |
-
transcribed_segments: list
|
313 |
-
Text segments transcribed from audio
|
314 |
-
add_timestamp: bool
|
315 |
-
Determines whether to add a timestamp to the end of the filename.
|
316 |
-
file_format: str
|
317 |
-
File format to write. Supported formats: [SRT, WebVTT, txt]
|
318 |
-
|
319 |
-
Returns
|
320 |
-
----------
|
321 |
-
content: str
|
322 |
-
Result of the transcription
|
323 |
-
output_path: str
|
324 |
-
output file path
|
325 |
-
"""
|
326 |
-
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
327 |
-
if add_timestamp:
|
328 |
-
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
|
329 |
-
else:
|
330 |
-
output_path = os.path.join("outputs", f"{file_name}")
|
331 |
-
|
332 |
-
if file_format == "SRT":
|
333 |
-
content = get_srt(transcribed_segments)
|
334 |
-
output_path += '.srt'
|
335 |
-
write_file(content, output_path)
|
336 |
-
|
337 |
-
elif file_format == "WebVTT":
|
338 |
-
content = get_vtt(transcribed_segments)
|
339 |
-
output_path += '.vtt'
|
340 |
-
write_file(content, output_path)
|
341 |
-
|
342 |
-
elif file_format == "txt":
|
343 |
-
content = get_txt(transcribed_segments)
|
344 |
-
output_path += '.txt'
|
345 |
-
write_file(content, output_path)
|
346 |
-
return content, output_path
|
347 |
-
|
348 |
-
@staticmethod
|
349 |
-
def format_time(elapsed_time: float) -> str:
|
350 |
-
"""
|
351 |
-
Get {hours} {minutes} {seconds} time format string
|
352 |
-
|
353 |
-
Parameters
|
354 |
-
----------
|
355 |
-
elapsed_time: str
|
356 |
-
Elapsed time for transcription
|
357 |
-
|
358 |
-
Returns
|
359 |
-
----------
|
360 |
-
Time format string
|
361 |
-
"""
|
362 |
-
hours, rem = divmod(elapsed_time, 3600)
|
363 |
-
minutes, seconds = divmod(rem, 60)
|
364 |
-
|
365 |
-
time_str = ""
|
366 |
-
if hours:
|
367 |
-
time_str += f"{hours} hours "
|
368 |
-
if minutes:
|
369 |
-
time_str += f"{minutes} minutes "
|
370 |
-
seconds = round(seconds)
|
371 |
-
time_str += f"{seconds} seconds"
|
372 |
-
|
373 |
-
return time_str.strip()
|
|
|
4 |
import os
|
5 |
from typing import BinaryIO, Union, Tuple, List
|
6 |
import numpy as np
|
|
|
7 |
import torch
|
8 |
|
9 |
+
from modules.whisper_base import WhisperBase
|
|
|
|
|
10 |
from modules.whisper_parameter import *
|
11 |
|
|
|
12 |
|
13 |
+
class WhisperInference(WhisperBase):
|
|
|
14 |
def __init__(self):
|
15 |
+
super().__init__(
|
16 |
+
model_dir=os.path.join("models", "Whisper")
|
17 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def transcribe(self,
|
20 |
audio: Union[str, np.ndarray, torch.Tensor],
|
|
|
58 |
beam_size=params.beam_size,
|
59 |
logprob_threshold=params.log_prob_threshold,
|
60 |
no_speech_threshold=params.no_speech_threshold,
|
61 |
+
task="translate" if params.is_translate and self.current_model_size in self.translatable_models else "transcribe",
|
62 |
fp16=True if params.compute_type == "float16" else False,
|
63 |
best_of=params.best_of,
|
64 |
patience=params.patience,
|
|
|
94 |
name=model_size,
|
95 |
device=self.device,
|
96 |
download_root=self.model_dir
|
97 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|