Spaces:
Running
Running
jhj0517
commited on
Commit
·
b72fd8a
1
Parent(s):
81509c3
refactor base abstract class for whisper
Browse files- modules/base_interface.py +0 -23
- modules/whisper_base.py +333 -0
modules/base_interface.py
DELETED
@@ -1,23 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
from typing import List
|
4 |
-
|
5 |
-
|
6 |
-
class BaseInterface:
|
7 |
-
def __init__(self):
|
8 |
-
pass
|
9 |
-
|
10 |
-
@staticmethod
|
11 |
-
def release_cuda_memory():
|
12 |
-
if torch.cuda.is_available():
|
13 |
-
torch.cuda.empty_cache()
|
14 |
-
torch.cuda.reset_max_memory_allocated()
|
15 |
-
|
16 |
-
@staticmethod
|
17 |
-
def remove_input_files(file_paths: List[str]):
|
18 |
-
if not file_paths:
|
19 |
-
return
|
20 |
-
|
21 |
-
for file_path in file_paths:
|
22 |
-
if file_path and os.path.exists(file_path):
|
23 |
-
os.remove(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modules/whisper_base.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from typing import List
|
4 |
+
import whisper
|
5 |
+
import gradio as gr
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
from typing import BinaryIO, Union, Tuple, List
|
8 |
+
import numpy as np
|
9 |
+
from datetime import datetime
|
10 |
+
|
11 |
+
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
12 |
+
from modules.youtube_manager import get_ytdata, get_ytaudio
|
13 |
+
from modules.whisper_parameter import *
|
14 |
+
|
15 |
+
|
16 |
+
class WhisperBase(ABC):
|
17 |
+
def __init__(self,
|
18 |
+
model_dir: str):
|
19 |
+
self.model = None
|
20 |
+
self.current_model_size = None
|
21 |
+
self.model_dir = model_dir
|
22 |
+
os.makedirs(self.model_dir, exist_ok=True)
|
23 |
+
self.available_models = whisper.available_models()
|
24 |
+
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
25 |
+
self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
|
26 |
+
self.device = self.get_device()
|
27 |
+
self.available_compute_types = ["float16", "float32"]
|
28 |
+
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
|
29 |
+
|
30 |
+
@abstractmethod
|
31 |
+
def transcribe(self,
|
32 |
+
audio: Union[str, BinaryIO, np.ndarray],
|
33 |
+
progress: gr.Progress,
|
34 |
+
*whisper_params,
|
35 |
+
):
|
36 |
+
pass
|
37 |
+
|
38 |
+
@abstractmethod
|
39 |
+
def update_model(self,
|
40 |
+
model_size: str,
|
41 |
+
compute_type: str,
|
42 |
+
progress: gr.Progress
|
43 |
+
):
|
44 |
+
pass
|
45 |
+
|
46 |
+
def transcribe_file(self,
|
47 |
+
files: list,
|
48 |
+
file_format: str,
|
49 |
+
add_timestamp: bool,
|
50 |
+
progress=gr.Progress(),
|
51 |
+
*whisper_params,
|
52 |
+
) -> list:
|
53 |
+
"""
|
54 |
+
Write subtitle file from Files
|
55 |
+
|
56 |
+
Parameters
|
57 |
+
----------
|
58 |
+
files: list
|
59 |
+
List of files to transcribe from gr.Files()
|
60 |
+
file_format: str
|
61 |
+
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
62 |
+
add_timestamp: bool
|
63 |
+
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
|
64 |
+
progress: gr.Progress
|
65 |
+
Indicator to show progress directly in gradio.
|
66 |
+
*whisper_params: tuple
|
67 |
+
Gradio components related to Whisper. see whisper_data_class.py for details.
|
68 |
+
|
69 |
+
Returns
|
70 |
+
----------
|
71 |
+
result_str:
|
72 |
+
Result of transcription to return to gr.Textbox()
|
73 |
+
result_file_path:
|
74 |
+
Output file path to return to gr.Files()
|
75 |
+
"""
|
76 |
+
try:
|
77 |
+
files_info = {}
|
78 |
+
for file in files:
|
79 |
+
transcribed_segments, time_for_task = self.transcribe(
|
80 |
+
file.name,
|
81 |
+
progress,
|
82 |
+
*whisper_params,
|
83 |
+
)
|
84 |
+
|
85 |
+
file_name, file_ext = os.path.splitext(os.path.basename(file.name))
|
86 |
+
file_name = safe_filename(file_name)
|
87 |
+
subtitle, file_path = self.generate_and_write_file(
|
88 |
+
file_name=file_name,
|
89 |
+
transcribed_segments=transcribed_segments,
|
90 |
+
add_timestamp=add_timestamp,
|
91 |
+
file_format=file_format
|
92 |
+
)
|
93 |
+
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task, "path": file_path}
|
94 |
+
|
95 |
+
total_result = ''
|
96 |
+
total_time = 0
|
97 |
+
for file_name, info in files_info.items():
|
98 |
+
total_result += '------------------------------------\n'
|
99 |
+
total_result += f'{file_name}\n\n'
|
100 |
+
total_result += f'{info["subtitle"]}'
|
101 |
+
total_time += info["time_for_task"]
|
102 |
+
|
103 |
+
result_str = f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
|
104 |
+
result_file_path = [info['path'] for info in files_info.values()]
|
105 |
+
|
106 |
+
return [result_str, result_file_path]
|
107 |
+
|
108 |
+
except Exception as e:
|
109 |
+
print(f"Error transcribing file: {e}")
|
110 |
+
finally:
|
111 |
+
self.release_cuda_memory()
|
112 |
+
if not files:
|
113 |
+
self.remove_input_files([file.name for file in files])
|
114 |
+
|
115 |
+
def transcribe_mic(self,
|
116 |
+
mic_audio: str,
|
117 |
+
file_format: str,
|
118 |
+
progress=gr.Progress(),
|
119 |
+
*whisper_params,
|
120 |
+
) -> list:
|
121 |
+
"""
|
122 |
+
Write subtitle file from microphone
|
123 |
+
|
124 |
+
Parameters
|
125 |
+
----------
|
126 |
+
mic_audio: str
|
127 |
+
Audio file path from gr.Microphone()
|
128 |
+
file_format: str
|
129 |
+
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
130 |
+
progress: gr.Progress
|
131 |
+
Indicator to show progress directly in gradio.
|
132 |
+
*whisper_params: tuple
|
133 |
+
Gradio components related to Whisper. see whisper_data_class.py for details.
|
134 |
+
|
135 |
+
Returns
|
136 |
+
----------
|
137 |
+
result_str:
|
138 |
+
Result of transcription to return to gr.Textbox()
|
139 |
+
result_file_path:
|
140 |
+
Output file path to return to gr.Files()
|
141 |
+
"""
|
142 |
+
try:
|
143 |
+
progress(0, desc="Loading Audio..")
|
144 |
+
transcribed_segments, time_for_task = self.transcribe(
|
145 |
+
mic_audio,
|
146 |
+
progress,
|
147 |
+
*whisper_params,
|
148 |
+
)
|
149 |
+
progress(1, desc="Completed!")
|
150 |
+
|
151 |
+
subtitle, result_file_path = self.generate_and_write_file(
|
152 |
+
file_name="Mic",
|
153 |
+
transcribed_segments=transcribed_segments,
|
154 |
+
add_timestamp=True,
|
155 |
+
file_format=file_format
|
156 |
+
)
|
157 |
+
|
158 |
+
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
159 |
+
return [result_str, result_file_path]
|
160 |
+
except Exception as e:
|
161 |
+
print(f"Error transcribing file: {e}")
|
162 |
+
finally:
|
163 |
+
self.release_cuda_memory()
|
164 |
+
self.remove_input_files([mic_audio])
|
165 |
+
|
166 |
+
def transcribe_youtube(self,
|
167 |
+
youtube_link: str,
|
168 |
+
file_format: str,
|
169 |
+
add_timestamp: bool,
|
170 |
+
progress=gr.Progress(),
|
171 |
+
*whisper_params,
|
172 |
+
) -> list:
|
173 |
+
"""
|
174 |
+
Write subtitle file from Youtube
|
175 |
+
|
176 |
+
Parameters
|
177 |
+
----------
|
178 |
+
youtube_link: str
|
179 |
+
URL of the Youtube video to transcribe from gr.Textbox()
|
180 |
+
file_format: str
|
181 |
+
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
182 |
+
add_timestamp: bool
|
183 |
+
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
184 |
+
progress: gr.Progress
|
185 |
+
Indicator to show progress directly in gradio.
|
186 |
+
*whisper_params: tuple
|
187 |
+
Gradio components related to Whisper. see whisper_data_class.py for details.
|
188 |
+
|
189 |
+
Returns
|
190 |
+
----------
|
191 |
+
result_str:
|
192 |
+
Result of transcription to return to gr.Textbox()
|
193 |
+
result_file_path:
|
194 |
+
Output file path to return to gr.Files()
|
195 |
+
"""
|
196 |
+
try:
|
197 |
+
progress(0, desc="Loading Audio from Youtube..")
|
198 |
+
yt = get_ytdata(youtube_link)
|
199 |
+
audio = get_ytaudio(yt)
|
200 |
+
|
201 |
+
transcribed_segments, time_for_task = self.transcribe(
|
202 |
+
audio,
|
203 |
+
progress,
|
204 |
+
*whisper_params,
|
205 |
+
)
|
206 |
+
|
207 |
+
progress(1, desc="Completed!")
|
208 |
+
|
209 |
+
file_name = safe_filename(yt.title)
|
210 |
+
subtitle, result_file_path = self.generate_and_write_file(
|
211 |
+
file_name=file_name,
|
212 |
+
transcribed_segments=transcribed_segments,
|
213 |
+
add_timestamp=add_timestamp,
|
214 |
+
file_format=file_format
|
215 |
+
)
|
216 |
+
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
217 |
+
|
218 |
+
return [result_str, result_file_path]
|
219 |
+
|
220 |
+
except Exception as e:
|
221 |
+
print(f"Error transcribing file: {e}")
|
222 |
+
finally:
|
223 |
+
try:
|
224 |
+
if 'yt' not in locals():
|
225 |
+
yt = get_ytdata(youtube_link)
|
226 |
+
file_path = get_ytaudio(yt)
|
227 |
+
else:
|
228 |
+
file_path = get_ytaudio(yt)
|
229 |
+
|
230 |
+
self.release_cuda_memory()
|
231 |
+
self.remove_input_files([file_path])
|
232 |
+
except Exception as cleanup_error:
|
233 |
+
pass
|
234 |
+
|
235 |
+
@staticmethod
|
236 |
+
def generate_and_write_file(file_name: str,
|
237 |
+
transcribed_segments: list,
|
238 |
+
add_timestamp: bool,
|
239 |
+
file_format: str,
|
240 |
+
) -> str:
|
241 |
+
"""
|
242 |
+
Writes subtitle file
|
243 |
+
|
244 |
+
Parameters
|
245 |
+
----------
|
246 |
+
file_name: str
|
247 |
+
Output file name
|
248 |
+
transcribed_segments: list
|
249 |
+
Text segments transcribed from audio
|
250 |
+
add_timestamp: bool
|
251 |
+
Determines whether to add a timestamp to the end of the filename.
|
252 |
+
file_format: str
|
253 |
+
File format to write. Supported formats: [SRT, WebVTT, txt]
|
254 |
+
|
255 |
+
Returns
|
256 |
+
----------
|
257 |
+
content: str
|
258 |
+
Result of the transcription
|
259 |
+
output_path: str
|
260 |
+
output file path
|
261 |
+
"""
|
262 |
+
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
263 |
+
if add_timestamp:
|
264 |
+
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
|
265 |
+
else:
|
266 |
+
output_path = os.path.join("outputs", f"{file_name}")
|
267 |
+
|
268 |
+
if file_format == "SRT":
|
269 |
+
content = get_srt(transcribed_segments)
|
270 |
+
output_path += '.srt'
|
271 |
+
write_file(content, output_path)
|
272 |
+
|
273 |
+
elif file_format == "WebVTT":
|
274 |
+
content = get_vtt(transcribed_segments)
|
275 |
+
output_path += '.vtt'
|
276 |
+
write_file(content, output_path)
|
277 |
+
|
278 |
+
elif file_format == "txt":
|
279 |
+
content = get_txt(transcribed_segments)
|
280 |
+
output_path += '.txt'
|
281 |
+
write_file(content, output_path)
|
282 |
+
return content, output_path
|
283 |
+
|
284 |
+
@staticmethod
|
285 |
+
def format_time(elapsed_time: float) -> str:
|
286 |
+
"""
|
287 |
+
Get {hours} {minutes} {seconds} time format string
|
288 |
+
|
289 |
+
Parameters
|
290 |
+
----------
|
291 |
+
elapsed_time: str
|
292 |
+
Elapsed time for transcription
|
293 |
+
|
294 |
+
Returns
|
295 |
+
----------
|
296 |
+
Time format string
|
297 |
+
"""
|
298 |
+
hours, rem = divmod(elapsed_time, 3600)
|
299 |
+
minutes, seconds = divmod(rem, 60)
|
300 |
+
|
301 |
+
time_str = ""
|
302 |
+
if hours:
|
303 |
+
time_str += f"{hours} hours "
|
304 |
+
if minutes:
|
305 |
+
time_str += f"{minutes} minutes "
|
306 |
+
seconds = round(seconds)
|
307 |
+
time_str += f"{seconds} seconds"
|
308 |
+
|
309 |
+
return time_str.strip()
|
310 |
+
|
311 |
+
@staticmethod
|
312 |
+
def get_device():
|
313 |
+
if torch.cuda.is_available():
|
314 |
+
return "cuda"
|
315 |
+
elif torch.backends.mps.is_available():
|
316 |
+
return "mps"
|
317 |
+
else:
|
318 |
+
return "cpu"
|
319 |
+
|
320 |
+
@staticmethod
|
321 |
+
def release_cuda_memory():
|
322 |
+
if torch.cuda.is_available():
|
323 |
+
torch.cuda.empty_cache()
|
324 |
+
torch.cuda.reset_max_memory_allocated()
|
325 |
+
|
326 |
+
@staticmethod
|
327 |
+
def remove_input_files(file_paths: List[str]):
|
328 |
+
if not file_paths:
|
329 |
+
return
|
330 |
+
|
331 |
+
for file_path in file_paths:
|
332 |
+
if file_path and os.path.exists(file_path):
|
333 |
+
os.remove(file_path)
|