Spaces:
Running
Running
File size: 7,586 Bytes
eeb8996 ed88f88 18ab700 eeb8996 899eb46 a06971f 778a475 eeb8996 201b316 eeb8996 8126fce ada247c eeb8996 aa3d924 e76c01c b2bb752 7d9eec3 8126fce 7d9eec3 b2bb752 e76c01c 5633565 0a34091 8126fce 0a34091 e76c01c 0a34091 91dee77 ed88f88 91dee77 a526073 eeb8996 4495187 a526073 18ab700 eeb8996 a526073 ca8ee6a eeb8996 7d3f3f5 eeb8996 e901c63 eeb8996 e65592d 6148cfe a526073 ae16b55 a06971f eeb8996 0facd17 a526073 84a6b12 b8faf9d 45fcb1d 2da678e 45fcb1d a06971f 20f9596 ac480c2 eeb8996 c8ae5e5 eeb8996 a526073 4495187 a526073 eeb8996 4b52dfd eeb8996 a526073 91dee77 a526073 91dee77 6d9d096 a526073 eeb8996 91dee77 7d9eec3 91dee77 ed88f88 0531958 a06971f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import os
import time
import numpy as np
import torch
from typing import BinaryIO, Union, Tuple, List
import faster_whisper
from faster_whisper.vad import VadOptions
import ast
import ctranslate2
import whisper
import gradio as gr
from argparse import Namespace
from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, UVR_MODELS_DIR, OUTPUT_DIR)
from modules.whisper.whisper_parameter import *
from modules.whisper.whisper_base import WhisperBase
class FasterWhisperInference(WhisperBase):
def __init__(self,
model_dir: str = FASTER_WHISPER_MODELS_DIR,
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
uvr_model_dir: str = UVR_MODELS_DIR,
output_dir: str = OUTPUT_DIR,
):
super().__init__(
model_dir=model_dir,
diarization_model_dir=diarization_model_dir,
uvr_model_dir=uvr_model_dir,
output_dir=output_dir
)
self.model_dir = model_dir
os.makedirs(self.model_dir, exist_ok=True)
self.model_paths = self.get_model_paths()
self.device = self.get_device()
self.available_models = self.model_paths.keys()
self.available_compute_types = ctranslate2.get_supported_compute_types(
"cuda") if self.device == "cuda" else ctranslate2.get_supported_compute_types("cpu")
def transcribe(self,
audio: Union[str, BinaryIO, np.ndarray],
progress: gr.Progress = gr.Progress(),
*whisper_params,
) -> Tuple[List[dict], float]:
"""
transcribe method for faster-whisper.
Parameters
----------
audio: Union[str, BinaryIO, np.ndarray]
Audio path or file binary or Audio numpy array
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
Returns
----------
segments_result: List[dict]
list of dicts that includes start, end timestamps and transcribed text
elapsed_time: float
elapsed time for transcription
"""
start_time = time.time()
params = WhisperParameters.as_value(*whisper_params)
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
self.update_model(params.model_size, params.compute_type, progress)
# None parameters with Textboxes: https://github.com/gradio-app/gradio/issues/8723
if not params.initial_prompt:
params.initial_prompt = None
if not params.prefix:
params.prefix = None
if not params.hotwords:
params.hotwords = None
params.suppress_tokens = self.format_suppress_tokens_str(params.suppress_tokens)
segments, info = self.model.transcribe(
audio=audio,
language=params.lang,
task="translate" if params.is_translate and self.current_model_size in self.translatable_models else "transcribe",
beam_size=params.beam_size,
log_prob_threshold=params.log_prob_threshold,
no_speech_threshold=params.no_speech_threshold,
best_of=params.best_of,
patience=params.patience,
temperature=params.temperature,
initial_prompt=params.initial_prompt,
compression_ratio_threshold=params.compression_ratio_threshold,
length_penalty=params.length_penalty,
repetition_penalty=params.repetition_penalty,
no_repeat_ngram_size=params.no_repeat_ngram_size,
prefix=params.prefix,
suppress_blank=params.suppress_blank,
suppress_tokens=params.suppress_tokens,
max_initial_timestamp=params.max_initial_timestamp,
word_timestamps=params.word_timestamps,
prepend_punctuations=params.prepend_punctuations,
append_punctuations=params.append_punctuations,
max_new_tokens=params.max_new_tokens,
chunk_length=params.chunk_length,
hallucination_silence_threshold=params.hallucination_silence_threshold,
hotwords=params.hotwords,
language_detection_threshold=params.language_detection_threshold,
language_detection_segments=params.language_detection_segments,
prompt_reset_on_temperature=params.prompt_reset_on_temperature,
)
progress(0, desc="Loading audio..")
segments_result = []
for segment in segments:
progress(segment.start / info.duration, desc="Transcribing..")
segments_result.append({
"start": segment.start,
"end": segment.end,
"text": segment.text
})
elapsed_time = time.time() - start_time
return segments_result, elapsed_time
def update_model(self,
model_size: str,
compute_type: str,
progress: gr.Progress = gr.Progress()
):
"""
Update current model setting
Parameters
----------
model_size: str
Size of whisper model
compute_type: str
Compute type for transcription.
see more info : https://opennmt.net/CTranslate2/quantization.html
progress: gr.Progress
Indicator to show progress directly in gradio.
"""
progress(0, desc="Initializing Model..")
self.current_model_size = self.model_paths[model_size]
self.current_compute_type = compute_type
self.model = faster_whisper.WhisperModel(
device=self.device,
model_size_or_path=self.current_model_size,
download_root=self.model_dir,
compute_type=self.current_compute_type
)
def get_model_paths(self):
"""
Get available models from models path including fine-tuned model.
Returns
----------
Name list of models
"""
model_paths = {model:model for model in whisper.available_models()}
faster_whisper_prefix = "models--Systran--faster-whisper-"
existing_models = os.listdir(self.model_dir)
wrong_dirs = [".locks"]
existing_models = list(set(existing_models) - set(wrong_dirs))
for model_name in existing_models:
if faster_whisper_prefix in model_name:
model_name = model_name[len(faster_whisper_prefix):]
if model_name not in whisper.available_models():
model_paths[model_name] = os.path.join(self.model_dir, model_name)
return model_paths
@staticmethod
def get_device():
if torch.cuda.is_available():
return "cuda"
else:
return "auto"
@staticmethod
def format_suppress_tokens_str(suppress_tokens_str: str) -> List[int]:
try:
suppress_tokens = ast.literal_eval(suppress_tokens_str)
if not isinstance(suppress_tokens, list) or not all(isinstance(item, int) for item in suppress_tokens):
raise ValueError("Invalid Suppress Tokens. The value must be type of List[int]")
return suppress_tokens
except Exception as e:
raise ValueError("Invalid Suppress Tokens. The value must be type of List[int]")
|