File size: 3,965 Bytes
63ab978
 
a63d493
63ab978
18ab700
a63d493
 
63ab978
e76c01c
312644e
9cf2e86
2ff01cb
e76c01c
b2bb752
5633565
 
b2bb752
e76c01c
5633565
 
e76c01c
a63d493
 
 
9f69aa4
 
18ab700
a63d493
9f69aa4
a63d493
 
 
9f69aa4
a63d493
 
 
9f69aa4
 
a63d493
 
 
18ab700
a63d493
 
 
 
 
296b5e1
9f69aa4
 
 
 
 
 
a63d493
 
 
 
 
9f69aa4
a63d493
9f69aa4
 
 
e76c01c
9f69aa4
84a6b12
 
b8faf9d
45fcb1d
 
a63d493
 
 
 
9f69aa4
 
 
 
 
a63d493
9f69aa4
 
 
 
 
 
 
 
 
 
 
a63d493
9f69aa4
 
 
 
 
 
6d9d096
e76c01c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import whisper
import gradio as gr
import time
import os
from typing import BinaryIO, Union, Tuple, List
import numpy as np
import torch

from modules.whisper_base import WhisperBase
from modules.whisper_parameter import *


class WhisperInference(WhisperBase):
    def __init__(self,
                 model_dir: str,
                 output_dir: str
                 ):
        super().__init__(
            model_dir=model_dir,
            output_dir=output_dir
        )

    def transcribe(self,
                   audio: Union[str, np.ndarray, torch.Tensor],
                   progress: gr.Progress,
                   *whisper_params,
                   ) -> Tuple[List[dict], float]:
        """
        transcribe method for faster-whisper.

        Parameters
        ----------
        audio: Union[str, BinaryIO, np.ndarray]
            Audio path or file binary or Audio numpy array
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Gradio components related to Whisper. see whisper_data_class.py for details.

        Returns
        ----------
        segments_result: List[dict]
            list of dicts that includes start, end timestamps and transcribed text
        elapsed_time: float
            elapsed time for transcription
        """
        start_time = time.time()
        params = WhisperParameters.post_process(*whisper_params)

        if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
            self.update_model(params.model_size, params.compute_type, progress)

        if params.lang == "Automatic Detection":
            params.lang = None

        def progress_callback(progress_value):
            progress(progress_value, desc="Transcribing..")

        segments_result = self.model.transcribe(audio=audio,
                                                language=params.lang,
                                                verbose=False,
                                                beam_size=params.beam_size,
                                                logprob_threshold=params.log_prob_threshold,
                                                no_speech_threshold=params.no_speech_threshold,
                                                task="translate" if params.is_translate and self.current_model_size in self.translatable_models else "transcribe",
                                                fp16=True if params.compute_type == "float16" else False,
                                                best_of=params.best_of,
                                                patience=params.patience,
                                                temperature=params.temperature,
                                                compression_ratio_threshold=params.compression_ratio_threshold,
                                                progress_callback=progress_callback,)["segments"]
        elapsed_time = time.time() - start_time

        return segments_result, elapsed_time

    def update_model(self,
                     model_size: str,
                     compute_type: str,
                     progress: gr.Progress,
                     ):
        """
        Update current model setting

        Parameters
        ----------
        model_size: str
            Size of whisper model
        compute_type: str
            Compute type for transcription.
            see more info : https://opennmt.net/CTranslate2/quantization.html
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        """
        progress(0, desc="Initializing Model..")
        self.current_compute_type = compute_type
        self.current_model_size = model_size
        self.model = whisper.load_model(
            name=model_size,
            device=self.device,
            download_root=self.model_dir
        )