File size: 15,127 Bytes
b72fd8a
 
 
 
 
 
 
 
201b316
4c322cf
 
b72fd8a
ada247c
 
f6adc1d
ada247c
 
4c322cf
b72fd8a
 
 
 
5633565
201b316
 
5633565
b72fd8a
 
 
5633565
 
b72fd8a
 
 
 
 
 
 
201b316
 
 
4c322cf
b72fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e99075
 
 
 
595b5f3
 
9548fb4
 
 
595b5f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e99075
4c322cf
 
 
 
 
 
 
 
cb96699
4c322cf
 
 
 
 
6e99075
 
 
 
 
 
 
 
 
4c322cf
6e99075
 
 
595b5f3
 
 
 
 
6e99075
595b5f3
 
6e99075
b72fd8a
 
f6adc1d
b72fd8a
 
 
 
 
 
 
 
 
 
 
 
f6adc1d
 
 
b72fd8a
 
 
 
 
 
 
595b5f3
b72fd8a
 
 
 
 
 
 
 
 
f6adc1d
 
 
 
b72fd8a
 
6e99075
b72fd8a
 
 
 
 
 
 
 
 
 
 
5633565
 
b72fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595b5f3
b72fd8a
 
 
 
 
 
 
 
 
 
6e99075
b72fd8a
 
 
 
 
 
 
 
 
 
5633565
 
b72fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595b5f3
b72fd8a
 
 
 
 
 
 
 
 
 
 
 
 
6e99075
b72fd8a
 
 
 
 
 
 
 
 
 
 
 
5633565
 
b72fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5633565
b72fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
5633565
 
b72fd8a
 
 
 
 
 
 
 
 
 
5633565
b72fd8a
5633565
b72fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import os
import torch
import whisper
import gradio as gr
from abc import ABC, abstractmethod
from typing import BinaryIO, Union, Tuple, List
import numpy as np
from datetime import datetime
from argparse import Namespace
from faster_whisper.vad import VadOptions
from dataclasses import astuple

from modules.utils.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
from modules.utils.youtube_manager import get_ytdata, get_ytaudio
from modules.utils.files_manager import get_media_files, format_gradio_files
from modules.whisper.whisper_parameter import *
from modules.diarize.diarizer import Diarizer
from modules.vad.silero_vad import SileroVAD


class WhisperBase(ABC):
    def __init__(self,
                 model_dir: str,
                 output_dir: str,
                 args: Namespace
                 ):
        self.model = None
        self.current_model_size = None
        self.model_dir = model_dir
        self.output_dir = output_dir
        os.makedirs(self.output_dir, exist_ok=True)
        os.makedirs(self.model_dir, exist_ok=True)
        self.available_models = whisper.available_models()
        self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
        self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
        self.device = self.get_device()
        self.available_compute_types = ["float16", "float32"]
        self.current_compute_type = "float16" if self.device == "cuda" else "float32"
        self.diarizer = Diarizer(
            model_dir=args.diarization_model_dir
        )
        self.vad = SileroVAD()

    @abstractmethod
    def transcribe(self,
                   audio: Union[str, BinaryIO, np.ndarray],
                   progress: gr.Progress,
                   *whisper_params,
                   ):
        pass

    @abstractmethod
    def update_model(self,
                     model_size: str,
                     compute_type: str,
                     progress: gr.Progress
                     ):
        pass

    def run(self,
            audio: Union[str, BinaryIO, np.ndarray],
            progress: gr.Progress,
            *whisper_params,
            ) -> Tuple[List[dict], float]:
        """
        Run transcription with conditional pre-processing and post-processing.
        The VAD will be performed to remove noise from the audio input in pre-processing, if enabled.
        The diarization will be performed in post-processing, if enabled.

        Parameters
        ----------
        audio: Union[str, BinaryIO, np.ndarray]
            Audio input. This can be file path or binary type.
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Parameters related with whisper. This will be dealt with "WhisperParameters" data class

        Returns
        ----------
        segments_result: List[dict]
            list of dicts that includes start, end timestamps and transcribed text
        elapsed_time: float
            elapsed time for running
        """
        params = WhisperParameters.as_value(*whisper_params)

        if params.vad_filter:
            vad_options = VadOptions(
                threshold=params.threshold,
                min_speech_duration_ms=params.min_speech_duration_ms,
                max_speech_duration_s=params.max_speech_duration_s,
                min_silence_duration_ms=params.min_silence_duration_ms,
                speech_pad_ms=params.speech_pad_ms
            )
            audio = self.vad.run(
                audio=audio,
                vad_parameters=vad_options,
                progress=progress
            )

        if params.lang == "Automatic Detection":
            params.lang = None
        else:
            language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
            params.lang = language_code_dict[params.lang]

        result, elapsed_time = self.transcribe(
            audio,
            progress,
            *astuple(params)
        )

        if params.is_diarize:
            result, elapsed_time_diarization = self.diarizer.run(
                audio=audio,
                use_auth_token=params.hf_token,
                transcribed_result=result,
                device=self.device
            )
            elapsed_time += elapsed_time_diarization
        return result, elapsed_time

    def transcribe_file(self,
                        files: list,
                        input_folder_path: str,
                        file_format: str,
                        add_timestamp: bool,
                        progress=gr.Progress(),
                        *whisper_params,
                        ) -> list:
        """
        Write subtitle file from Files

        Parameters
        ----------
        files: list
            List of files to transcribe from gr.Files()
        input_folder_path: str
            Input folder path to transcribe from gr.Textbox(). If this is provided, `files` will be ignored and
            this will be used instead.
        file_format: str
            Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
        add_timestamp: bool
            Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Parameters related with whisper. This will be dealt with "WhisperParameters" data class

        Returns
        ----------
        result_str:
            Result of transcription to return to gr.Textbox()
        result_file_path:
            Output file path to return to gr.Files()
        """
        try:
            if input_folder_path:
                files = get_media_files(input_folder_path)
                files = format_gradio_files(files)

            files_info = {}
            for file in files:
                transcribed_segments, time_for_task = self.run(
                    file.name,
                    progress,
                    *whisper_params,
                )

                file_name, file_ext = os.path.splitext(os.path.basename(file.name))
                file_name = safe_filename(file_name)
                subtitle, file_path = self.generate_and_write_file(
                    file_name=file_name,
                    transcribed_segments=transcribed_segments,
                    add_timestamp=add_timestamp,
                    file_format=file_format,
                    output_dir=self.output_dir
                )
                files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task, "path": file_path}

            total_result = ''
            total_time = 0
            for file_name, info in files_info.items():
                total_result += '------------------------------------\n'
                total_result += f'{file_name}\n\n'
                total_result += f'{info["subtitle"]}'
                total_time += info["time_for_task"]

            result_str = f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
            result_file_path = [info['path'] for info in files_info.values()]

            return [result_str, result_file_path]

        except Exception as e:
            print(f"Error transcribing file: {e}")
        finally:
            self.release_cuda_memory()
            if not files:
                self.remove_input_files([file.name for file in files])

    def transcribe_mic(self,
                       mic_audio: str,
                       file_format: str,
                       progress=gr.Progress(),
                       *whisper_params,
                       ) -> list:
        """
        Write subtitle file from microphone

        Parameters
        ----------
        mic_audio: str
            Audio file path from gr.Microphone()
        file_format: str
            Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Parameters related with whisper. This will be dealt with "WhisperParameters" data class

        Returns
        ----------
        result_str:
            Result of transcription to return to gr.Textbox()
        result_file_path:
            Output file path to return to gr.Files()
        """
        try:
            progress(0, desc="Loading Audio..")
            transcribed_segments, time_for_task = self.run(
                mic_audio,
                progress,
                *whisper_params,
            )
            progress(1, desc="Completed!")

            subtitle, result_file_path = self.generate_and_write_file(
                file_name="Mic",
                transcribed_segments=transcribed_segments,
                add_timestamp=True,
                file_format=file_format,
                output_dir=self.output_dir
            )

            result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
            return [result_str, result_file_path]
        except Exception as e:
            print(f"Error transcribing file: {e}")
        finally:
            self.release_cuda_memory()
            self.remove_input_files([mic_audio])

    def transcribe_youtube(self,
                           youtube_link: str,
                           file_format: str,
                           add_timestamp: bool,
                           progress=gr.Progress(),
                           *whisper_params,
                           ) -> list:
        """
        Write subtitle file from Youtube

        Parameters
        ----------
        youtube_link: str
            URL of the Youtube video to transcribe from gr.Textbox()
        file_format: str
            Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
        add_timestamp: bool
            Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Parameters related with whisper. This will be dealt with "WhisperParameters" data class

        Returns
        ----------
        result_str:
            Result of transcription to return to gr.Textbox()
        result_file_path:
            Output file path to return to gr.Files()
        """
        try:
            progress(0, desc="Loading Audio from Youtube..")
            yt = get_ytdata(youtube_link)
            audio = get_ytaudio(yt)

            transcribed_segments, time_for_task = self.run(
                audio,
                progress,
                *whisper_params,
            )

            progress(1, desc="Completed!")

            file_name = safe_filename(yt.title)
            subtitle, result_file_path = self.generate_and_write_file(
                file_name=file_name,
                transcribed_segments=transcribed_segments,
                add_timestamp=add_timestamp,
                file_format=file_format,
                output_dir=self.output_dir
            )
            result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"

            return [result_str, result_file_path]

        except Exception as e:
            print(f"Error transcribing file: {e}")
        finally:
            try:
                if 'yt' not in locals():
                    yt = get_ytdata(youtube_link)
                    file_path = get_ytaudio(yt)
                else:
                    file_path = get_ytaudio(yt)

                self.release_cuda_memory()
                self.remove_input_files([file_path])
            except Exception as cleanup_error:
                pass

    @staticmethod
    def generate_and_write_file(file_name: str,
                                transcribed_segments: list,
                                add_timestamp: bool,
                                file_format: str,
                                output_dir: str
                                ) -> str:
        """
        Writes subtitle file

        Parameters
        ----------
        file_name: str
            Output file name
        transcribed_segments: list
            Text segments transcribed from audio
        add_timestamp: bool
            Determines whether to add a timestamp to the end of the filename.
        file_format: str
            File format to write. Supported formats: [SRT, WebVTT, txt]
        output_dir: str
            Directory path of the output

        Returns
        ----------
        content: str
            Result of the transcription
        output_path: str
            output file path
        """
        timestamp = datetime.now().strftime("%m%d%H%M%S")
        if add_timestamp:
            output_path = os.path.join(output_dir, f"{file_name}-{timestamp}")
        else:
            output_path = os.path.join(output_dir, f"{file_name}")

        if file_format == "SRT":
            content = get_srt(transcribed_segments)
            output_path += '.srt'
            write_file(content, output_path)

        elif file_format == "WebVTT":
            content = get_vtt(transcribed_segments)
            output_path += '.vtt'
            write_file(content, output_path)

        elif file_format == "txt":
            content = get_txt(transcribed_segments)
            output_path += '.txt'
            write_file(content, output_path)
        return content, output_path

    @staticmethod
    def format_time(elapsed_time: float) -> str:
        """
        Get {hours} {minutes} {seconds} time format string

        Parameters
        ----------
        elapsed_time: str
            Elapsed time for transcription

        Returns
        ----------
        Time format string
        """
        hours, rem = divmod(elapsed_time, 3600)
        minutes, seconds = divmod(rem, 60)

        time_str = ""
        if hours:
            time_str += f"{hours} hours "
        if minutes:
            time_str += f"{minutes} minutes "
        seconds = round(seconds)
        time_str += f"{seconds} seconds"

        return time_str.strip()

    @staticmethod
    def get_device():
        if torch.cuda.is_available():
            return "cuda"
        elif torch.backends.mps.is_available():
            return "mps"
        else:
            return "cpu"

    @staticmethod
    def release_cuda_memory():
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.reset_max_memory_allocated()

    @staticmethod
    def remove_input_files(file_paths: List[str]):
        if not file_paths:
            return

        for file_path in file_paths:
            if file_path and os.path.exists(file_path):
                os.remove(file_path)