File size: 5,274 Bytes
eeb8996
 
 
ed88f88
18ab700
eeb8996
899eb46
778a475
eeb8996
 
201b316
eeb8996
ada247c
 
eeb8996
aa3d924
e76c01c
b2bb752
5633565
201b316
 
b2bb752
e76c01c
5633565
201b316
 
e76c01c
91dee77
ed88f88
91dee77
a526073
 
eeb8996
 
 
a526073
 
18ab700
eeb8996
 
 
 
 
 
 
 
 
a526073
ca8ee6a
eeb8996
 
 
7d3f3f5
eeb8996
e901c63
 
eeb8996
 
e65592d
6148cfe
a526073
 
 
 
eeb8996
 
0facd17
a526073
 
 
 
84a6b12
b8faf9d
45fcb1d
 
eeb8996
 
 
 
 
c8ae5e5
eeb8996
 
 
 
 
 
 
 
 
a526073
 
 
 
 
eeb8996
4b52dfd
 
 
 
 
 
 
 
 
 
 
eeb8996
a526073
91dee77
a526073
 
 
91dee77
6d9d096
a526073
 
eeb8996
91dee77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed88f88
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import time
import numpy as np
import torch
from typing import BinaryIO, Union, Tuple, List
import faster_whisper
from faster_whisper.vad import VadOptions
import ctranslate2
import whisper
import gradio as gr
from argparse import Namespace

from modules.whisper.whisper_parameter import *
from modules.whisper.whisper_base import WhisperBase


class FasterWhisperInference(WhisperBase):
    def __init__(self,
                 model_dir: str,
                 output_dir: str,
                 args: Namespace
                 ):
        super().__init__(
            model_dir=model_dir,
            output_dir=output_dir,
            args=args
        )
        self.model_paths = self.get_model_paths()
        self.device = self.get_device()
        self.available_models = self.model_paths.keys()
        self.available_compute_types = ctranslate2.get_supported_compute_types(
            "cuda") if self.device == "cuda" else ctranslate2.get_supported_compute_types("cpu")

    def transcribe(self,
                   audio: Union[str, BinaryIO, np.ndarray],
                   progress: gr.Progress,
                   *whisper_params,
                   ) -> Tuple[List[dict], float]:
        """
        transcribe method for faster-whisper.

        Parameters
        ----------
        audio: Union[str, BinaryIO, np.ndarray]
            Audio path or file binary or Audio numpy array
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Parameters related with whisper. This will be dealt with "WhisperParameters" data class

        Returns
        ----------
        segments_result: List[dict]
            list of dicts that includes start, end timestamps and transcribed text
        elapsed_time: float
            elapsed time for transcription
        """
        start_time = time.time()

        params = WhisperParameters.as_value(*whisper_params)

        if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
            self.update_model(params.model_size, params.compute_type, progress)

        segments, info = self.model.transcribe(
            audio=audio,
            language=params.lang,
            task="translate" if params.is_translate and self.current_model_size in self.translatable_models else "transcribe",
            beam_size=params.beam_size,
            log_prob_threshold=params.log_prob_threshold,
            no_speech_threshold=params.no_speech_threshold,
            best_of=params.best_of,
            patience=params.patience,
            temperature=params.temperature,
            compression_ratio_threshold=params.compression_ratio_threshold,
        )
        progress(0, desc="Loading audio..")

        segments_result = []
        for segment in segments:
            progress(segment.start / info.duration, desc="Transcribing..")
            segments_result.append({
                "start": segment.start,
                "end": segment.end,
                "text": segment.text
            })

        elapsed_time = time.time() - start_time
        return segments_result, elapsed_time

    def update_model(self,
                     model_size: str,
                     compute_type: str,
                     progress: gr.Progress
                     ):
        """
        Update current model setting

        Parameters
        ----------
        model_size: str
            Size of whisper model
        compute_type: str
            Compute type for transcription.
            see more info : https://opennmt.net/CTranslate2/quantization.html
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        """
        progress(0, desc="Initializing Model..")
        self.current_model_size = self.model_paths[model_size]
        self.current_compute_type = compute_type
        self.model = faster_whisper.WhisperModel(
            device=self.device,
            model_size_or_path=self.current_model_size,
            download_root=self.model_dir,
            compute_type=self.current_compute_type
        )

    def get_model_paths(self):
        """
        Get available models from models path including fine-tuned model.

        Returns
        ----------
        Name list of models
        """
        model_paths = {model:model for model in whisper.available_models()}
        faster_whisper_prefix = "models--Systran--faster-whisper-"

        existing_models = os.listdir(self.model_dir)
        wrong_dirs = [".locks"]
        existing_models = list(set(existing_models) - set(wrong_dirs))

        webui_dir = os.getcwd()

        for model_name in existing_models:
            if faster_whisper_prefix in model_name:
                model_name = model_name[len(faster_whisper_prefix):]

            if model_name not in whisper.available_models():
                model_paths[model_name] = os.path.join(webui_dir, self.model_dir, model_name)
        return model_paths

    @staticmethod
    def get_device():
        if torch.cuda.is_available():
            return "cuda"
        elif torch.backends.mps.is_available():
            return "auto"
        else:
            return "cpu"