shakespeare-generator / train_optimized.py
jatingocodeo's picture
Create train_optimized.py
6442065 verified
raw
history blame
11.1 kB
import os
import math
import time
import torch
import torch.nn as nn
from torch.nn import functional as F
from dataclasses import dataclass
from torch.nn.parallel import DistributedDataParallel as DDP
import numpy as np
from datetime import datetime
# Hyperparameters
learning_rate = 3e-4 # Peak learning rate
min_lr = 3e-5 # Minimum learning rate at the end of training
warmup_iters = 2000 # Linear warmup over warmup_iters
lr_decay_iters = 800000 # Cosine decay over lr_decay_iters
weight_decay = 0.1 # AdamW weight decay
beta1 = 0.9 # AdamW beta1
beta2 = 0.95 # AdamW beta2
grad_clip = 1.0 # Clip gradients at this value
decay_lr = True # Whether to decay learning rate
batch_size = 64 # Training batch size
block_size = 256 # Maximum sequence length
eval_interval = 500 # How often to evaluate
eval_iters = 200 # Number of iterations to use for evaluation
log_interval = 10 # How often to print training progress
# Model architecture
@dataclass
class GPTConfig:
block_size: int = block_size
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 16
n_embd: int = 1024
dropout: float = 0.1
bias: bool = False
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
def forward(self, x):
B, T, C = x.size()
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
drop = nn.Dropout(config.dropout),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd)
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
# Initialize weights
self.apply(self._init_weights)
for pn, p in self.named_parameters():
if pn.endswith('c_proj.weight'):
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
pos = torch.arange(0, t, dtype=torch.long, device=device)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
if targets is not None:
logits = self.lm_head(x)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
else:
logits = self.lm_head(x[:, [-1], :])
loss = None
return logits, loss
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
for _ in range(max_new_tokens):
idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float('Inf')
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx
def get_batch(data, block_size, batch_size):
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i:i+block_size] for i in ix])
y = torch.stack([data[i+1:i+1+block_size] for i in ix])
return x, y
def get_lr(it):
# 1) Linear warmup for warmup_iters steps
if it < warmup_iters:
return learning_rate * it / warmup_iters
# 2) If it > lr_decay_iters, return min learning rate
if it > lr_decay_iters:
return min_lr
# 3) In between, use cosine decay down to min learning rate
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (learning_rate - min_lr)
def save_training_log(log_entry, filename='training_logs.md'):
"""Save training logs in markdown format"""
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
with open(filename, 'a') as f:
if not f.tell(): # If file is empty, write header
f.write('# Training Logs\n\n')
f.write('| Timestamp | Iteration | Training Loss | Learning Rate |\n')
f.write('|-----------|------------|---------------|---------------|\n')
f.write(f'| {timestamp} | {log_entry["iter"]:10d} | {log_entry["train_loss"]:.6f} | {log_entry["lr"]:.2e} |\n')
def save_model(model, optimizer, iter_num, loss, filename):
"""Save model checkpoint with error handling"""
try:
# First save to a temporary file
tmp_filename = filename + '.tmp'
checkpoint = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'iter_num': iter_num,
'loss': loss,
}
# Use torch.save with zip compression
torch.save(checkpoint, tmp_filename, _use_new_zipfile_serialization=True)
# If save was successful, rename tmp file to final filename
if os.path.exists(filename):
os.remove(filename) # Remove old file if it exists
os.rename(tmp_filename, filename)
return True
except Exception as e:
print(f"Error saving model to {filename}: {str(e)}")
# Clean up temp file if it exists
if os.path.exists(tmp_filename):
try:
os.remove(tmp_filename)
except:
pass
return False
def main():
torch.manual_seed(1337)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
# Create checkpoint directory
os.makedirs('checkpoints', exist_ok=True)
# Load the data
with open('input.txt', 'r') as f:
text = f.read()
chars = sorted(list(set(text)))
vocab_size = len(chars)
stoi = {ch:i for i,ch in enumerate(chars)}
itos = {i:ch for i,ch in enumerate(chars)}
encode = lambda s: [stoi[c] for c in s]
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9 * len(data))
train_data = data[:n]
val_data = data[n:]
# Initialize the model
model = GPT(GPTConfig(vocab_size=vocab_size))
model = model.to(device)
print(f"Model parameters: {sum(p.numel() for p in model.parameters())/1e6:.2f}M")
# Initialize optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, betas=(beta1, beta2), weight_decay=weight_decay)
# Training loop
best_train_loss = float('inf')
iter_num = 0
while True:
# Get batch and learning rate
xb, yb = get_batch(train_data, block_size, batch_size)
xb, yb = xb.to(device), yb.to(device)
lr = get_lr(iter_num) if decay_lr else learning_rate
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Forward pass
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
optimizer.step()
# Logging and model saving
if iter_num % log_interval == 0:
train_loss = loss.item()
print(f"iter {iter_num}: loss {train_loss:.4f}, lr {lr:e}")
save_training_log({
"iter": iter_num,
"train_loss": train_loss,
"lr": lr
})
# Save model if loss improved
if train_loss < best_train_loss:
best_train_loss = train_loss
print(f"Saving model with training loss: {best_train_loss:.6f}")
# Save the latest model
save_model(
model,
optimizer,
iter_num,
best_train_loss,
os.path.join('checkpoints', 'latest_model.pt')
)
if best_train_loss < 0.099999:
print(f"Achieved target loss of {best_train_loss:.6f}")
break
iter_num += 1
if iter_num > lr_decay_iters:
break
if __name__ == '__main__':
main()