File size: 11,061 Bytes
6442065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
import math
import time
import torch
import torch.nn as nn
from torch.nn import functional as F
from dataclasses import dataclass
from torch.nn.parallel import DistributedDataParallel as DDP
import numpy as np
from datetime import datetime

# Hyperparameters
learning_rate = 3e-4  # Peak learning rate
min_lr = 3e-5  # Minimum learning rate at the end of training
warmup_iters = 2000  # Linear warmup over warmup_iters
lr_decay_iters = 800000  # Cosine decay over lr_decay_iters
weight_decay = 0.1  # AdamW weight decay
beta1 = 0.9  # AdamW beta1
beta2 = 0.95  # AdamW beta2
grad_clip = 1.0  # Clip gradients at this value
decay_lr = True  # Whether to decay learning rate
batch_size = 64  # Training batch size
block_size = 256  # Maximum sequence length
eval_interval = 500  # How often to evaluate
eval_iters = 200  # Number of iterations to use for evaluation
log_interval = 10  # How often to print training progress

# Model architecture
@dataclass
class GPTConfig:
    block_size: int = block_size
    vocab_size: int = 50304
    n_layer: int = 12
    n_head: int = 16
    n_embd: int = 1024
    dropout: float = 0.1
    bias: bool = False

class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
        self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
        self.attn_dropout = nn.Dropout(config.dropout)
        self.resid_dropout = nn.Dropout(config.dropout)
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.dropout = config.dropout

    def forward(self, x):
        B, T, C = x.size()
        qkv = self.c_attn(x)
        q, k, v = qkv.split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        
        y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.resid_dropout(self.c_proj(y))
        return y

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
        self.gelu = nn.GELU()
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            drop = nn.Dropout(config.dropout),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd)
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight
        
        # Initialize weights
        self.apply(self._init_weights)
        for pn, p in self.named_parameters():
            if pn.endswith('c_proj.weight'):
                torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        device = idx.device
        b, t = idx.size()
        pos = torch.arange(0, t, dtype=torch.long, device=device)
        
        tok_emb = self.transformer.wte(idx)
        pos_emb = self.transformer.wpe(pos)
        x = self.transformer.drop(tok_emb + pos_emb)
        
        for block in self.transformer.h:
            x = block(x)
        x = self.transformer.ln_f(x)
        
        if targets is not None:
            logits = self.lm_head(x)
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            logits = self.lm_head(x[:, [-1], :])
            loss = None
            
        return logits, loss

    @torch.no_grad()
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        for _ in range(max_new_tokens):
            idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
            logits, _ = self(idx_cond)
            logits = logits[:, -1, :] / temperature
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            probs = F.softmax(logits, dim=-1)
            idx_next = torch.multinomial(probs, num_samples=1)
            idx = torch.cat((idx, idx_next), dim=1)
        return idx

def get_batch(data, block_size, batch_size):
    ix = torch.randint(len(data) - block_size, (batch_size,))
    x = torch.stack([data[i:i+block_size] for i in ix])
    y = torch.stack([data[i+1:i+1+block_size] for i in ix])
    return x, y

def get_lr(it):
    # 1) Linear warmup for warmup_iters steps
    if it < warmup_iters:
        return learning_rate * it / warmup_iters
    # 2) If it > lr_decay_iters, return min learning rate
    if it > lr_decay_iters:
        return min_lr
    # 3) In between, use cosine decay down to min learning rate
    decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
    assert 0 <= decay_ratio <= 1
    coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
    return min_lr + coeff * (learning_rate - min_lr)

def save_training_log(log_entry, filename='training_logs.md'):
    """Save training logs in markdown format"""
    timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    with open(filename, 'a') as f:
        if not f.tell():  # If file is empty, write header
            f.write('# Training Logs\n\n')
            f.write('| Timestamp | Iteration | Training Loss | Learning Rate |\n')
            f.write('|-----------|------------|---------------|---------------|\n')
        f.write(f'| {timestamp} | {log_entry["iter"]:10d} | {log_entry["train_loss"]:.6f} | {log_entry["lr"]:.2e} |\n')

def save_model(model, optimizer, iter_num, loss, filename):
    """Save model checkpoint with error handling"""
    try:
        # First save to a temporary file
        tmp_filename = filename + '.tmp'
        checkpoint = {
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'iter_num': iter_num,
            'loss': loss,
        }
        
        # Use torch.save with zip compression
        torch.save(checkpoint, tmp_filename, _use_new_zipfile_serialization=True)
        
        # If save was successful, rename tmp file to final filename
        if os.path.exists(filename):
            os.remove(filename)  # Remove old file if it exists
        os.rename(tmp_filename, filename)
        return True
    except Exception as e:
        print(f"Error saving model to {filename}: {str(e)}")
        # Clean up temp file if it exists
        if os.path.exists(tmp_filename):
            try:
                os.remove(tmp_filename)
            except:
                pass
        return False

def main():
    torch.manual_seed(1337)
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print(f"Using device: {device}")
    
    # Create checkpoint directory
    os.makedirs('checkpoints', exist_ok=True)
    
    # Load the data
    with open('input.txt', 'r') as f:
        text = f.read()
    chars = sorted(list(set(text)))
    vocab_size = len(chars)
    stoi = {ch:i for i,ch in enumerate(chars)}
    itos = {i:ch for i,ch in enumerate(chars)}
    encode = lambda s: [stoi[c] for c in s]
    data = torch.tensor(encode(text), dtype=torch.long)
    n = int(0.9 * len(data))
    train_data = data[:n]
    val_data = data[n:]
    
    # Initialize the model
    model = GPT(GPTConfig(vocab_size=vocab_size))
    model = model.to(device)
    print(f"Model parameters: {sum(p.numel() for p in model.parameters())/1e6:.2f}M")
    
    # Initialize optimizer
    optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, betas=(beta1, beta2), weight_decay=weight_decay)
    
    # Training loop
    best_train_loss = float('inf')
    iter_num = 0
    
    while True:
        # Get batch and learning rate
        xb, yb = get_batch(train_data, block_size, batch_size)
        xb, yb = xb.to(device), yb.to(device)
        lr = get_lr(iter_num) if decay_lr else learning_rate
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr
            
        # Forward pass
        logits, loss = model(xb, yb)
        optimizer.zero_grad(set_to_none=True)
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
        optimizer.step()
        
        # Logging and model saving
        if iter_num % log_interval == 0:
            train_loss = loss.item()
            print(f"iter {iter_num}: loss {train_loss:.4f}, lr {lr:e}")
            save_training_log({
                "iter": iter_num,
                "train_loss": train_loss,
                "lr": lr
            })
            
            # Save model if loss improved
            if train_loss < best_train_loss:
                best_train_loss = train_loss
                print(f"Saving model with training loss: {best_train_loss:.6f}")
                
                # Save the latest model
                save_model(
                    model, 
                    optimizer, 
                    iter_num, 
                    best_train_loss, 
                    os.path.join('checkpoints', 'latest_model.pt')
                )
                
                if best_train_loss < 0.099999:
                    print(f"Achieved target loss of {best_train_loss:.6f}")
                    break
                    
        iter_num += 1
        if iter_num > lr_decay_iters:
            break

if __name__ == '__main__':
    main()