yolopv2 / app.py
hank1996's picture
Update app.py
f5014f8
raw
history blame
9.12 kB
import gradio as gr
import os
#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt")
os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt")
os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
os.system("wget https://github.com/CAIC-AD/YOLOPv2/releases/download/V0.0.1/yolopv2.pt")
import argparse
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
from utils.functions import \
time_synchronized,select_device, increment_path,\
scale_coords,xyxy2xywh,non_max_suppression,split_for_trace_model,\
driving_area_mask,lane_line_mask,plot_one_box,show_seg_result,\
AverageMeter,\
LoadImages
from PIL import Image
def detect(img,model):
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)')
parser.add_argument('--source', type=str, default='Inference/', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--trace', action='store_true', help='trace model')
opt = parser.parse_args()
img.save("Inference/test.jpg")
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
save_img = True # save inference images
#webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
#('rtsp://', 'rtmp://', 'http://', 'https://'))
#print(webcam)
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
print(device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
inf_time = AverageMeter()
waste_time = AverageMeter()
nms_time = AverageMeter()
# Load model
#model = attempt_load(weights, map_location=device) # load FP32 model
#stride = int(model.stride.max()) # model stride
#imgsz = check_img_size(imgsz, s=stride) # check img_size
print(weights)
stride =32
model = torch.jit.load(weights,map_location=device)
model.eval()
# Set Dataloader
vid_path, vid_writer = None, None
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
[pred,anchor_grid],seg,ll= model(img)
t2 = time_synchronized()
# waste time: the incompatibility of torch.jit.trace causes extra time consumption in demo version
# but this problem will not appear in offical version
tw1 = time_synchronized()
pred = split_for_trace_model(pred,anchor_grid)
tw2 = time_synchronized()
# Apply NMS
t3 = time_synchronized()
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t4 = time_synchronized()
da_seg_mask = driving_area_mask(seg)
ll_seg_mask = lane_line_mask(ll)
# Process detections
for i, det in enumerate(pred): # detections per image
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
#s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img : # Add bbox to image
plot_one_box(xyxy, im0, line_thickness=3)
# Print time (inference)
print(f'{s}Done. ({t2 - t1:.3f}s)')
show_seg_result(im0, (da_seg_mask,ll_seg_mask), is_demo=True)
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
print(f" The image with the result is saved in: {save_path}")
else: # 'video' or 'stream'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
#w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
#h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
w,h = im0.shape[1], im0.shape[0]
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
inf_time.update(t2-t1,img.size(0))
nms_time.update(t4-t3,img.size(0))
waste_time.update(tw2-tw1,img.size(0))
print('inf : (%.4fs/frame) nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
print(f'Done. ({time.time() - t0:.3f}s)')
return Image.fromarray(im0[:,:,::-1])
gr.Interface(detect,[gr.Image(type="pil"),gr.Dropdown(choices=["yolopv2"])], gr.Image(type="pil"),title="Yolopv2",examples=[["horses.jpeg", "yolopv2"]],description="demo for <a href='https://github.com/CAIC-AD/YOLOPv2' style='text-decoration: underline' target='_blank'>WongKinYiu/yolov7</a> Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors").launch()