File size: 9,122 Bytes
d2afe6a
 
 
6fa8d2f
f922b4c
 
59294b2
d2afe6a
 
 
 
 
 
 
 
 
 
f4eaa92
d2afe6a
 
 
 
 
30481ca
 
 
 
 
 
 
 
 
d2afe6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c0c74d
 
 
d2afe6a
 
 
 
 
 
 
ef7395c
d2afe6a
 
 
e74c4a2
 
 
 
 
27bbd71
 
 
 
 
8370e1e
8a3c262
d2afe6a
 
 
4c0c74d
d2afe6a
 
 
 
 
 
 
 
 
8a3c262
d2afe6a
 
 
 
 
8a3c262
 
 
 
 
 
 
 
d2afe6a
 
8a3c262
d2afe6a
8a3c262
 
 
 
d2afe6a
 
 
8a3c262
4c0c74d
d2afe6a
 
 
 
 
 
 
 
 
 
 
 
 
8a3c262
d2afe6a
 
 
 
 
 
 
 
 
8a3c262
 
d2afe6a
8a3c262
 
 
d2afe6a
 
 
 
 
8a3c262
d2afe6a
 
 
 
 
 
 
8a3c262
 
 
d2afe6a
 
 
 
 
 
8a3c262
 
 
 
d2afe6a
 
 
 
 
f5014f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
import os

#os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt")
os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt")
os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
os.system("wget https://github.com/CAIC-AD/YOLOPv2/releases/download/V0.0.1/yolopv2.pt")

import argparse
import time
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random

from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
    scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel

from utils.functions import \
    time_synchronized,select_device, increment_path,\
    scale_coords,xyxy2xywh,non_max_suppression,split_for_trace_model,\
    driving_area_mask,lane_line_mask,plot_one_box,show_seg_result,\
    AverageMeter,\
    LoadImages


from PIL import Image
 



def detect(img,model):
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)')
    parser.add_argument('--source', type=str, default='Inference/', help='source')  # file/folder, 0 for webcam
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='display results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--trace', action='store_true', help='trace model')
    opt = parser.parse_args()
    img.save("Inference/test.jpg")
    source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
    save_img = True  # save inference images
    #webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        #('rtsp://', 'rtmp://', 'http://', 'https://'))
    #print(webcam)
    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    print(device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    inf_time = AverageMeter()
    waste_time = AverageMeter()
    nms_time = AverageMeter()

    # Load model
    #model = attempt_load(weights, map_location=device)  # load FP32 model
    #stride = int(model.stride.max())  # model stride
    #imgsz = check_img_size(imgsz, s=stride)  # check img_size
    print(weights)
    stride =32
    model  = torch.jit.load(weights,map_location=device)
    model.eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0

        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        [pred,anchor_grid],seg,ll= model(img)
        t2 = time_synchronized()

        # waste time: the incompatibility of  torch.jit.trace causes extra time consumption in demo version 
        # but this problem will not appear in offical version 
        tw1 = time_synchronized()
        pred = split_for_trace_model(pred,anchor_grid)
        tw2 = time_synchronized()

        # Apply NMS
        t3 = time_synchronized()
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t4 = time_synchronized()

        da_seg_mask = driving_area_mask(seg)
        ll_seg_mask = lane_line_mask(ll)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
          
            p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    #s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img :  # Add bbox to image
                        plot_one_box(xyxy, im0, line_thickness=3)

            # Print time (inference)
            print(f'{s}Done. ({t2 - t1:.3f}s)')
            show_seg_result(im0, (da_seg_mask,ll_seg_mask), is_demo=True)

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                    print(f" The image with the result is saved in: {save_path}")
                else:  # 'video' or 'stream'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            #w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            #h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                            w,h = im0.shape[1], im0.shape[0]
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer.write(im0)

    inf_time.update(t2-t1,img.size(0))
    nms_time.update(t4-t3,img.size(0))
    waste_time.update(tw2-tw1,img.size(0))
    print('inf : (%.4fs/frame)   nms : (%.4fs/frame)' % (inf_time.avg,nms_time.avg))
    print(f'Done. ({time.time() - t0:.3f}s)')

    return Image.fromarray(im0[:,:,::-1])

   
gr.Interface(detect,[gr.Image(type="pil"),gr.Dropdown(choices=["yolopv2"])], gr.Image(type="pil"),title="Yolopv2",examples=[["horses.jpeg", "yolopv2"]],description="demo for <a href='https://github.com/CAIC-AD/YOLOPv2' style='text-decoration: underline' target='_blank'>WongKinYiu/yolov7</a> Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors").launch()