Sign-language / src /display_gloss.py
Figea's picture
add docstring
974d749
import cv2
import json
import numpy as np
import pandas as pd
import time
def draw_hands_connections(frame, hand_landmarks):
'''
Draw white lines on the given frame between relevant hand keypoints.
Parameters
----------
frame: numpy array
The frame on which we want to draw.
hand_landmarks: dict
Dictionary mapping keypoint IDs (integers) to hand landmarks
(lists of two floats corresponding to the coordinates) for both hands.
Returns
-------
frame: numpy array
The frame with the newly drawn hand connections.
'''
# ---- Define hand_connections between keypoints to draw
#
hand_connections = [[0, 1], [1, 2], [2, 3], [3, 4],
[5, 6], [6, 7], [7, 8],
[9, 10], [10, 11], [11, 12],
[13, 14], [14, 15], [15, 16],
[17, 18], [18, 19], [19, 20]] #[5, 2], [0, 17]]
# ---- loop to draw left hand connections
#
for connection in hand_connections:
landmark_start = hand_landmarks['left_hand'].get(str(connection[0]))
landmark_end = hand_landmarks['left_hand'].get(str(connection[1]))
cv2.line(frame, landmark_start, landmark_end, (255, 255, 255), 2)
# ---- loop to to draw right hand connections
#
for connection in hand_connections:
landmark_start = hand_landmarks['right_hand'].get(str(connection[0]))
landmark_end = hand_landmarks['right_hand'].get(str(connection[1]))
cv2.line(frame, landmark_start, landmark_end, (255, 255, 255), 2)
return frame
def draw_pose_connections(frame, pose_landmarks):
'''
Draw white lines on the given frame between relevant posture keypoints.
Parameters
----------
frame: numpy array
The frame on which we want to draw.
pose_landmarks: dict
Dictionary mapping keypoint IDs (integers) to posture landmarks
(lists of two floats corresponding to the coordinates).
Returns
-------
frame: numpy array
The frame with the newly drawn posture connections.
'''
# ---- define posture connections between keypoints to draw
#
pose_connections = [[11, 12], [11, 13], [12, 14], [13, 15], [14, 16]]
# ---- loop to to draw posture connections
#
for connection in pose_connections:
landmark_start = pose_landmarks.get(str(connection[0]))
landmark_end = pose_landmarks.get(str(connection[1]))
cv2.line(frame, landmark_start, landmark_end, (255, 255, 255), 2)
return frame
def draw_face_connections(frame, face_landmarks):
'''
Draw white lines on the given frame between relevant face keypoints.
Parameters
----------
frame: numpy array
The frame on which we want to draw.
face_landmarks: dict
Dictionary mapping keypoint IDs (integers) to face landmarks
(lists of two floats corresponding to the coordinates).
Returns
-------
frame: numpy array
The frame with the newly drawn face connections.
'''
# ---- define pose connections
#
connections_dict = {'lipsUpperInner_connections' : [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308],\
'lipsLowerInner_connections' : [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\
'rightEyeUpper0_connections': [246, 161, 160, 159, 158, 157, 173],\
'rightEyeLower0' : [33, 7, 163, 144, 145, 153, 154, 155, 133],\
'rightEyebrowLower' : [35, 124, 46, 53, 52, 65],\
'leftEyeUpper0' : [466, 388, 387, 386, 385, 384, 398],\
'leftEyeLower0' : [263, 249, 390, 373, 374, 380, 381, 382, 362],\
'leftEyebrowLower' : [265, 353, 276, 283, 282, 295],\
'noseTip_midwayBetweenEye' : [1, 168],\
'noseTip_noseRightCorner' : [1, 98],\
'noseTip_LeftCorner' : [1, 327]\
}
# ---- loop to to draw face connections
#
for keypoints_list in connections_dict.values():
for index in range(len(keypoints_list)):
if index + 1 < len(keypoints_list):
landmark_start = face_landmarks.get(str(keypoints_list[index]))
landmark_end = face_landmarks.get(str(keypoints_list[index+1]))
cv2.line(frame, landmark_start, landmark_end, (255, 255, 255), 1)
return frame
def resize_landmarks(landmarks, resize_rate_width, resize_rate_height):
'''
Resize landmark coordinates by applying specific scaling factors
to both the width and height of the frame.
Parameters
----------
landmarks: dict
Dictionary mapping keypoint IDs (integers) to landmarks
(lists of two floats corresponding to the coordinates).
resize_rate_width: float
Scaling factor applied to the x-coordinate (width).
resize_rate_height: float
Scaling factor applied to the y-coordinate (height).
Returns
-------
landmarks: dict
Dictionary mapping keypoint IDs (integers) to the newly resized landmarks
(lists of two integers corresponding to the coordinates).
'''
for keypoint in landmarks.keys():
landmark_x, landmark_y = landmarks[keypoint]
landmarks[keypoint] = [int(resize_rate_width * landmark_x), int(resize_rate_height*landmark_y)]
return landmarks
def generate_video(gloss_list, dataset, vocabulary_list):
'''
Generate a video stream from a list of glosses.
Parameters
----------
gloss_list: list of str
List of glosses from which the signing video will be generated.
dataset: pandas.DataFrame
Dataset containing information about each gloss, including paths to landmark data.
vocabulary_list: list of str
List of tokens that have associated landmarks collected.
Yields
------
frame: bytes
JPEG-encoded frame for streaming.
'''
# ---- Fix size of the frame to the most common size of video we have in the dataset
# (corresponding to signer ID 11 who has the maximum number of videos).
#
FIXED_WIDTH, FIXED_HEIGHT = 576, 384
# ---- Fix the Frames Per Second (FPS) to match the videos collected in the dataset.
#
FPS = 25
# ---- Define carachteristics for text display.
#
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1
font_color = (0, 255, 0)
thickness = 2
line_type = cv2.LINE_AA
# ---- Loop over each gloss
#
for gloss in gloss_list:
# ---- Skip if gloss not in the vocabulary_list.
#
if not check_gloss_in_vocabulary(gloss, vocabulary_list):
continue
# ---- Get landmarks of all the frame in the dataset corresponding to the appropriate gloss.
#
video_id = select_video_id_from_gloss(gloss, dataset)
video_landmarks_path = dataset.loc[dataset['video_id'] == video_id, 'video_landmarks_path'].values[0]
with open(video_landmarks_path, 'r') as f:
video_landmarks = json.load(f)
width = video_landmarks[-1].get('width')
height = video_landmarks[-1].get('height')
# ---- Calculate resize rate for future landmark rescaling.
#
resize_rate_width, resize_rate_height = FIXED_WIDTH / width, FIXED_HEIGHT/height
# ---- Loop over each frame
#
for frame_landmarks in video_landmarks[:-1]:
# ---- Initialize blank image and get all landmarks of the given frame.
#
blank_image = np.zeros((FIXED_HEIGHT, FIXED_WIDTH, 3), dtype=np.uint8)
frame_hands_landmarks = frame_landmarks['hands_landmarks']
frame_pose_landmarks = frame_landmarks['pose_landmarks']
frame_face_landmarks = frame_landmarks['face_landmarks']
# ---- Resize landmarks.
#
frame_hands_landmarks_rs = {
'left_hand': resize_landmarks(frame_hands_landmarks['left_hand'], resize_rate_width, resize_rate_height),
'right_hand': resize_landmarks(frame_hands_landmarks['right_hand'], resize_rate_width, resize_rate_height)
}
frame_pose_landmarks_rs = resize_landmarks(frame_pose_landmarks, resize_rate_width, resize_rate_height)
frame_face_landmarks_rs = resize_landmarks(frame_face_landmarks, resize_rate_width, resize_rate_height)
# ---- Draw relevant connections between keypoints on the frame.
#
draw_hands_connections(blank_image, frame_hands_landmarks_rs)
draw_pose_connections(blank_image, frame_pose_landmarks_rs)
draw_face_connections(blank_image, frame_face_landmarks_rs)
# ---- Display text corresponding to the gloss on the frame.
#
text_size, _ = cv2.getTextSize(gloss, font, font_scale, thickness)
text_x = (FIXED_WIDTH - text_size[0]) // 2
text_y = FIXED_HEIGHT - 10
cv2.putText(blank_image, gloss, (text_x, text_y), font, font_scale, font_color, thickness, line_type)
# ---- JPEG-encode the frame for streaming.
#
_, buffer = cv2.imencode('.jpg', blank_image)
frame = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
time.sleep(1 / FPS)
def load_data(dataset_path='enhanced_dataset'):
'''
Load the dataset that contains all information about glosses.
Parameters
----------
dataset_path: str
Local path to the dataset.
Returns
-------
data_df: pandas.DataFrame
DataFrame containing the dataset with information about each gloss.
vocabulary_list: list of str
List of glosses (tokens) that have associated landmarks collected.
'''
filepath = dataset_path
data_df = pd.read_csv(filepath, dtype={'video_id': str})
vocabulary_list = data_df['gloss'].tolist()
return data_df, vocabulary_list
def check_gloss_in_vocabulary(gloss, vocabulary_list):
'''
Check if the given gloss is in the vocabulary list.
Parameters
----------
gloss: str
The gloss to check.
vocabulary_list: list of str
List of glosses (tokens) that have associated landmarks collected.
Returns
-------
bool
True if the gloss is in the vocabulary list, False otherwise.
'''
return gloss in vocabulary_list
def select_video_id_from_gloss(gloss, dataset):
'''
Selects a video ID corresponding to the given gloss from the dataset.
Parameters
----------
gloss : str
The gloss for which to retrieve the video ID.
dataset : pandas.DataFrame
A DataFrame containing information about each gloss, including 'signer_id', 'gloss', and 'video_id'.
Returns
-------
int
The video ID corresponding to the given gloss. If the gloss is found for 'signer_id' 11, the video ID for that signer is returned; otherwise, the video ID for the gloss from the entire dataset is returned.
'''
# ---- Choose preferentialy ID 11 because this signer with this ID signed the more video
#
filtered_data_id_11 = dataset.loc[dataset['signer_id'] == 11]
if gloss in filtered_data_id_11['gloss'].tolist():
video_id = filtered_data_id_11.loc[filtered_data_id_11['gloss'] == gloss, 'video_id'].values
else:
video_id = dataset.loc[dataset['gloss'] == gloss, 'video_id'].values
return video_id[0]