Spaces:
Paused
Paused
File size: 11,678 Bytes
c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 73c6cca c9f9492 974d749 c9f9492 2e870f3 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 974d749 c9f9492 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import cv2
import json
import numpy as np
import pandas as pd
import time
def draw_hands_connections(frame, hand_landmarks):
'''
Draw white lines on the given frame between relevant hand keypoints.
Parameters
----------
frame: numpy array
The frame on which we want to draw.
hand_landmarks: dict
Dictionary mapping keypoint IDs (integers) to hand landmarks
(lists of two floats corresponding to the coordinates) for both hands.
Returns
-------
frame: numpy array
The frame with the newly drawn hand connections.
'''
# ---- Define hand_connections between keypoints to draw
#
hand_connections = [[0, 1], [1, 2], [2, 3], [3, 4],
[5, 6], [6, 7], [7, 8],
[9, 10], [10, 11], [11, 12],
[13, 14], [14, 15], [15, 16],
[17, 18], [18, 19], [19, 20]] #[5, 2], [0, 17]]
# ---- loop to draw left hand connections
#
for connection in hand_connections:
landmark_start = hand_landmarks['left_hand'].get(str(connection[0]))
landmark_end = hand_landmarks['left_hand'].get(str(connection[1]))
cv2.line(frame, landmark_start, landmark_end, (255, 255, 255), 2)
# ---- loop to to draw right hand connections
#
for connection in hand_connections:
landmark_start = hand_landmarks['right_hand'].get(str(connection[0]))
landmark_end = hand_landmarks['right_hand'].get(str(connection[1]))
cv2.line(frame, landmark_start, landmark_end, (255, 255, 255), 2)
return frame
def draw_pose_connections(frame, pose_landmarks):
'''
Draw white lines on the given frame between relevant posture keypoints.
Parameters
----------
frame: numpy array
The frame on which we want to draw.
pose_landmarks: dict
Dictionary mapping keypoint IDs (integers) to posture landmarks
(lists of two floats corresponding to the coordinates).
Returns
-------
frame: numpy array
The frame with the newly drawn posture connections.
'''
# ---- define posture connections between keypoints to draw
#
pose_connections = [[11, 12], [11, 13], [12, 14], [13, 15], [14, 16]]
# ---- loop to to draw posture connections
#
for connection in pose_connections:
landmark_start = pose_landmarks.get(str(connection[0]))
landmark_end = pose_landmarks.get(str(connection[1]))
cv2.line(frame, landmark_start, landmark_end, (255, 255, 255), 2)
return frame
def draw_face_connections(frame, face_landmarks):
'''
Draw white lines on the given frame between relevant face keypoints.
Parameters
----------
frame: numpy array
The frame on which we want to draw.
face_landmarks: dict
Dictionary mapping keypoint IDs (integers) to face landmarks
(lists of two floats corresponding to the coordinates).
Returns
-------
frame: numpy array
The frame with the newly drawn face connections.
'''
# ---- define pose connections
#
connections_dict = {'lipsUpperInner_connections' : [78, 191, 80, 81, 82, 13, 312, 311, 310, 415, 308],\
'lipsLowerInner_connections' : [78, 95, 88, 178, 87, 14, 317, 402, 318, 324, 308],\
'rightEyeUpper0_connections': [246, 161, 160, 159, 158, 157, 173],\
'rightEyeLower0' : [33, 7, 163, 144, 145, 153, 154, 155, 133],\
'rightEyebrowLower' : [35, 124, 46, 53, 52, 65],\
'leftEyeUpper0' : [466, 388, 387, 386, 385, 384, 398],\
'leftEyeLower0' : [263, 249, 390, 373, 374, 380, 381, 382, 362],\
'leftEyebrowLower' : [265, 353, 276, 283, 282, 295],\
'noseTip_midwayBetweenEye' : [1, 168],\
'noseTip_noseRightCorner' : [1, 98],\
'noseTip_LeftCorner' : [1, 327]\
}
# ---- loop to to draw face connections
#
for keypoints_list in connections_dict.values():
for index in range(len(keypoints_list)):
if index + 1 < len(keypoints_list):
landmark_start = face_landmarks.get(str(keypoints_list[index]))
landmark_end = face_landmarks.get(str(keypoints_list[index+1]))
cv2.line(frame, landmark_start, landmark_end, (255, 255, 255), 1)
return frame
def resize_landmarks(landmarks, resize_rate_width, resize_rate_height):
'''
Resize landmark coordinates by applying specific scaling factors
to both the width and height of the frame.
Parameters
----------
landmarks: dict
Dictionary mapping keypoint IDs (integers) to landmarks
(lists of two floats corresponding to the coordinates).
resize_rate_width: float
Scaling factor applied to the x-coordinate (width).
resize_rate_height: float
Scaling factor applied to the y-coordinate (height).
Returns
-------
landmarks: dict
Dictionary mapping keypoint IDs (integers) to the newly resized landmarks
(lists of two integers corresponding to the coordinates).
'''
for keypoint in landmarks.keys():
landmark_x, landmark_y = landmarks[keypoint]
landmarks[keypoint] = [int(resize_rate_width * landmark_x), int(resize_rate_height*landmark_y)]
return landmarks
def generate_video(gloss_list, dataset, vocabulary_list):
'''
Generate a video stream from a list of glosses.
Parameters
----------
gloss_list: list of str
List of glosses from which the signing video will be generated.
dataset: pandas.DataFrame
Dataset containing information about each gloss, including paths to landmark data.
vocabulary_list: list of str
List of tokens that have associated landmarks collected.
Yields
------
frame: bytes
JPEG-encoded frame for streaming.
'''
# ---- Fix size of the frame to the most common size of video we have in the dataset
# (corresponding to signer ID 11 who has the maximum number of videos).
#
FIXED_WIDTH, FIXED_HEIGHT = 576, 384
# ---- Fix the Frames Per Second (FPS) to match the videos collected in the dataset.
#
FPS = 25
# ---- Define carachteristics for text display.
#
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1
font_color = (0, 255, 0)
thickness = 2
line_type = cv2.LINE_AA
# ---- Loop over each gloss
#
for gloss in gloss_list:
# ---- Skip if gloss not in the vocabulary_list.
#
if not check_gloss_in_vocabulary(gloss, vocabulary_list):
continue
# ---- Get landmarks of all the frame in the dataset corresponding to the appropriate gloss.
#
video_id = select_video_id_from_gloss(gloss, dataset)
video_landmarks_path = dataset.loc[dataset['video_id'] == video_id, 'video_landmarks_path'].values[0]
with open(video_landmarks_path, 'r') as f:
video_landmarks = json.load(f)
width = video_landmarks[-1].get('width')
height = video_landmarks[-1].get('height')
# ---- Calculate resize rate for future landmark rescaling.
#
resize_rate_width, resize_rate_height = FIXED_WIDTH / width, FIXED_HEIGHT/height
# ---- Loop over each frame
#
for frame_landmarks in video_landmarks[:-1]:
# ---- Initialize blank image and get all landmarks of the given frame.
#
blank_image = np.zeros((FIXED_HEIGHT, FIXED_WIDTH, 3), dtype=np.uint8)
frame_hands_landmarks = frame_landmarks['hands_landmarks']
frame_pose_landmarks = frame_landmarks['pose_landmarks']
frame_face_landmarks = frame_landmarks['face_landmarks']
# ---- Resize landmarks.
#
frame_hands_landmarks_rs = {
'left_hand': resize_landmarks(frame_hands_landmarks['left_hand'], resize_rate_width, resize_rate_height),
'right_hand': resize_landmarks(frame_hands_landmarks['right_hand'], resize_rate_width, resize_rate_height)
}
frame_pose_landmarks_rs = resize_landmarks(frame_pose_landmarks, resize_rate_width, resize_rate_height)
frame_face_landmarks_rs = resize_landmarks(frame_face_landmarks, resize_rate_width, resize_rate_height)
# ---- Draw relevant connections between keypoints on the frame.
#
draw_hands_connections(blank_image, frame_hands_landmarks_rs)
draw_pose_connections(blank_image, frame_pose_landmarks_rs)
draw_face_connections(blank_image, frame_face_landmarks_rs)
# ---- Display text corresponding to the gloss on the frame.
#
text_size, _ = cv2.getTextSize(gloss, font, font_scale, thickness)
text_x = (FIXED_WIDTH - text_size[0]) // 2
text_y = FIXED_HEIGHT - 10
cv2.putText(blank_image, gloss, (text_x, text_y), font, font_scale, font_color, thickness, line_type)
# ---- JPEG-encode the frame for streaming.
#
_, buffer = cv2.imencode('.jpg', blank_image)
frame = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')
time.sleep(1 / FPS)
def load_data(dataset_path='enhanced_dataset'):
'''
Load the dataset that contains all information about glosses.
Parameters
----------
dataset_path: str
Local path to the dataset.
Returns
-------
data_df: pandas.DataFrame
DataFrame containing the dataset with information about each gloss.
vocabulary_list: list of str
List of glosses (tokens) that have associated landmarks collected.
'''
filepath = dataset_path
data_df = pd.read_csv(filepath, dtype={'video_id': str})
vocabulary_list = data_df['gloss'].tolist()
return data_df, vocabulary_list
def check_gloss_in_vocabulary(gloss, vocabulary_list):
'''
Check if the given gloss is in the vocabulary list.
Parameters
----------
gloss: str
The gloss to check.
vocabulary_list: list of str
List of glosses (tokens) that have associated landmarks collected.
Returns
-------
bool
True if the gloss is in the vocabulary list, False otherwise.
'''
return gloss in vocabulary_list
def select_video_id_from_gloss(gloss, dataset):
'''
Selects a video ID corresponding to the given gloss from the dataset.
Parameters
----------
gloss : str
The gloss for which to retrieve the video ID.
dataset : pandas.DataFrame
A DataFrame containing information about each gloss, including 'signer_id', 'gloss', and 'video_id'.
Returns
-------
int
The video ID corresponding to the given gloss. If the gloss is found for 'signer_id' 11, the video ID for that signer is returned; otherwise, the video ID for the gloss from the entire dataset is returned.
'''
# ---- Choose preferentialy ID 11 because this signer with this ID signed the more video
#
filtered_data_id_11 = dataset.loc[dataset['signer_id'] == 11]
if gloss in filtered_data_id_11['gloss'].tolist():
video_id = filtered_data_id_11.loc[filtered_data_id_11['gloss'] == gloss, 'video_id'].values
else:
video_id = dataset.loc[dataset['gloss'] == gloss, 'video_id'].values
return video_id[0] |