Pijush2023 commited on
Commit
648accc
·
verified ·
1 Parent(s): a69f193

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +716 -5
app.py CHANGED
@@ -1,3 +1,644 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import requests
3
  import os
@@ -263,7 +904,8 @@ def bot(history, choice, tts_choice):
263
  audio_future = executor.submit(generate_audio_parler_tts, response)
264
  elif tts_choice == "MARS5":
265
  audio_future = executor.submit(generate_audio_mars5, response)
266
-
 
267
 
268
  for character in response:
269
  history[-1][1] += character
@@ -314,7 +956,7 @@ def generate_map(location_names):
314
  if geocode_result:
315
  location = geocode_result[0]['geometry']['location']
316
  folium.Marker(
317
- [location['lat'], 'lng'],
318
  tooltip=f"{geocode_result[0]['formatted_address']}"
319
  ).add_to(m)
320
 
@@ -331,8 +973,7 @@ def fetch_local_news():
331
  <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
332
  <style>
333
  .news-item {
334
- font-family: 'Verdana', sans-serif;
335
- color: #333;
336
  background-color: #f0f8ff;
337
  margin-bottom: 15px;
338
  padding: 10px;
@@ -584,6 +1225,75 @@ def generate_audio_mars5(text):
584
  logging.debug(f"Audio saved to {combined_audio_path}")
585
  return combined_audio_path
586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587
  pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
588
  pipe.to(device)
589
 
@@ -617,7 +1327,7 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
617
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
618
  chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
619
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
620
- tts_choice = gr.Radio(label="Select TTS System", choices=["Eleven Labs", "Parler-TTS", "MARS5"], value="Eleven Labs")
621
  bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
622
  bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
623
  chatbot.like(print_like_dislike, None, None)
@@ -659,6 +1369,7 @@ demo.launch(share=True)
659
 
660
 
661
 
 
662
 
663
 
664
  # import gradio as gr
 
1
+ # import gradio as gr
2
+ # import requests
3
+ # import os
4
+ # import time
5
+ # import re
6
+ # import logging
7
+ # import tempfile
8
+ # import folium
9
+ # import concurrent.futures
10
+ # import torch
11
+ # from PIL import Image
12
+ # from datetime import datetime
13
+ # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
14
+ # from googlemaps import Client as GoogleMapsClient
15
+ # from gtts import gTTS
16
+ # from diffusers import StableDiffusionPipeline
17
+ # from langchain_openai import OpenAIEmbeddings, ChatOpenAI
18
+ # from langchain_pinecone import PineconeVectorStore
19
+ # from langchain.prompts import PromptTemplate
20
+ # from langchain.chains import RetrievalQA
21
+ # from langchain.chains.conversation.memory import ConversationBufferWindowMemory
22
+ # from langchain.agents import Tool, initialize_agent
23
+ # from huggingface_hub import login
24
+ # from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
25
+ # from parler_tts import ParlerTTSForConditionalGeneration
26
+ # from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
27
+ # from scipy.io.wavfile import write as write_wav
28
+ # from pydub import AudioSegment
29
+ # from string import punctuation
30
+ # import librosa
31
+ # from pathlib import Path
32
+ # import torchaudio
33
+
34
+ # # Check if the token is already set in the environment variables
35
+ # hf_token = os.getenv("HF_TOKEN")
36
+ # if hf_token is None:
37
+ # print("Please set your Hugging Face token in the environment variables.")
38
+ # else:
39
+ # login(token=hf_token)
40
+
41
+ # logging.basicConfig(level=logging.DEBUG)
42
+
43
+ # embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
44
+
45
+ # from pinecone import Pinecone
46
+ # pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
47
+
48
+ # index_name = "birmingham-dataset"
49
+ # vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
50
+ # retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
51
+
52
+ # chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
53
+
54
+ # conversational_memory = ConversationBufferWindowMemory(
55
+ # memory_key='chat_history',
56
+ # k=10,
57
+ # return_messages=True
58
+ # )
59
+
60
+ # def get_current_time_and_date():
61
+ # now = datetime.now()
62
+ # return now.strftime("%Y-%m-%d %H:%M:%S")
63
+
64
+ # current_time_and_date = get_current_time_and_date()
65
+
66
+ # def fetch_local_events():
67
+ # api_key = os.environ['SERP_API']
68
+ # url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
69
+ # response = requests.get(url)
70
+ # if response.status_code == 200:
71
+ # events_results = response.json().get("events_results", [])
72
+ # events_html = """
73
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
74
+ # <style>
75
+ # .event-item {
76
+ # font-family: 'Verdana', sans-serif;
77
+ # color: #333;
78
+ # margin-bottom: 15px;
79
+ # padding: 10px;
80
+ # font-weight: bold;
81
+ # }
82
+ # .event-item a {
83
+ # color: #1E90FF;
84
+ # text-decoration: none;
85
+ # }
86
+ # .event-item a:hover {
87
+ # text-decoration: underline;
88
+ # }
89
+ # </style>
90
+ # """
91
+ # for index, event in enumerate(events_results):
92
+ # title = event.get("title", "No title")
93
+ # date = event.get("date", "No date")
94
+ # location = event.get("address", "No location")
95
+ # link = event.get("link", "#")
96
+ # events_html += f"""
97
+ # <div class="event-item">
98
+ # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
99
+ # <p>Date: {date}<br>Location: {location}</p>
100
+ # </div>
101
+ # """
102
+ # return events_html
103
+ # else:
104
+ # return "<p>Failed to fetch local events</p>"
105
+
106
+ # def fetch_local_weather():
107
+ # try:
108
+ # api_key = os.environ['WEATHER_API']
109
+ # url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
110
+ # response = requests.get(url)
111
+ # response.raise_for_status()
112
+ # jsonData = response.json()
113
+
114
+ # current_conditions = jsonData.get("currentConditions", {})
115
+ # temp_celsius = current_conditions.get("temp", "N/A")
116
+
117
+ # if temp_celsius != "N/A":
118
+ # temp_fahrenheit = int((temp_celsius * 9/5) + 32)
119
+ # else:
120
+ # temp_fahrenheit = "N/A"
121
+
122
+ # condition = current_conditions.get("conditions", "N/A")
123
+ # humidity = current_conditions.get("humidity", "N/A")
124
+
125
+ # weather_html = f"""
126
+ # <div class="weather-theme">
127
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
128
+ # <div class="weather-content">
129
+ # <div class="weather-icon">
130
+ # <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
131
+ # </div>
132
+ # <div class="weather-details">
133
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
134
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
135
+ # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
136
+ # </div>
137
+ # </div>
138
+ # </div>
139
+ # <style>
140
+ # .weather-theme {{
141
+ # animation: backgroundAnimation 10s infinite alternate;
142
+ # border-radius: 10px;
143
+ # padding: 10px;
144
+ # margin-bottom: 15px;
145
+ # background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
146
+ # background-size: 400% 400%;
147
+ # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
148
+ # transition: box-shadow 0.3s ease, background-color 0.3s ease;
149
+ # }}
150
+ # .weather-theme:hover {{
151
+ # box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
152
+ # background-position: 100% 100%;
153
+ # }}
154
+ # @keyframes backgroundAnimation {{
155
+ # 0% {{ background-position: 0% 50%; }}
156
+ # 100% {{ background-position: 100% 50%; }}
157
+ # }}
158
+ # .weather-content {{
159
+ # display: flex;
160
+ # align-items: center;
161
+ # }}
162
+ # .weather-icon {{
163
+ # flex: 1;
164
+ # }}
165
+ # .weather-details {{
166
+ # flex: 3;
167
+ # }}
168
+ # </style>
169
+ # """
170
+ # return weather_html
171
+ # except requests.exceptions.RequestException as e:
172
+ # return f"<p>Failed to fetch local weather: {e}</p>"
173
+
174
+ # def get_weather_icon(condition):
175
+ # condition_map = {
176
+ # "Clear": "c01d",
177
+ # "Partly Cloudy": "c02d",
178
+ # "Cloudy": "c03d",
179
+ # "Overcast": "c04d",
180
+ # "Mist": "a01d",
181
+ # "Patchy rain possible": "r01d",
182
+ # "Light rain": "r02d",
183
+ # "Moderate rain": "r03d",
184
+ # "Heavy rain": "r04d",
185
+ # "Snow": "s01d",
186
+ # "Thunderstorm": "t01d",
187
+ # "Fog": "a05d",
188
+ # }
189
+ # return condition_map.get(condition, "c04d")
190
+
191
+ # template1 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on weather being a sunny bright day and the today's date is 1st july 2024, use the following pieces of context,
192
+ # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
193
+ # Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
194
+ # event type and description. Always say "It was my pleasure!" at the end of the answer.
195
+ # {context}
196
+ # Question: {question}
197
+ # Helpful Answer:"""
198
+
199
+ # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
200
+ # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
201
+ # Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
202
+ # {context}
203
+ # Question: {question}
204
+ # Helpful Answer:"""
205
+
206
+ # QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
207
+ # QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
208
+
209
+ # def build_qa_chain(prompt_template):
210
+ # qa_chain = RetrievalQA.from_chain_type(
211
+ # llm=chat_model,
212
+ # chain_type="stuff",
213
+ # retriever=retriever,
214
+ # chain_type_kwargs={"prompt": prompt_template}
215
+ # )
216
+ # tools = [
217
+ # Tool(
218
+ # name='Knowledge Base',
219
+ # func=qa_chain,
220
+ # description='Use this tool when answering general knowledge queries to get more information about the topic'
221
+ # )
222
+ # ]
223
+ # return qa_chain, tools
224
+
225
+ # def initialize_agent_with_prompt(prompt_template):
226
+ # qa_chain, tools = build_qa_chain(prompt_template)
227
+ # agent = initialize_agent(
228
+ # agent='chat-conversational-react-description',
229
+ # tools=tools,
230
+ # llm=chat_model,
231
+ # verbose=False,
232
+ # max_iteration=5,
233
+ # early_stopping_method='generate',
234
+ # memory=conversational_memory
235
+ # )
236
+ # return agent
237
+
238
+ # def generate_answer(message, choice):
239
+ # logging.debug(f"generate_answer called with prompt_choice: {choice}")
240
+
241
+ # if choice == "Details":
242
+ # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
243
+ # elif choice == "Conversational":
244
+ # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
245
+ # else:
246
+ # logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
247
+ # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
248
+ # response = agent(message)
249
+
250
+ # addresses = extract_addresses(response['output'])
251
+ # return response['output'], addresses
252
+
253
+ # def bot(history, choice, tts_choice):
254
+ # if not history:
255
+ # return history
256
+ # response, addresses = generate_answer(history[-1][0], choice)
257
+ # history[-1][1] = ""
258
+
259
+ # with concurrent.futures.ThreadPoolExecutor() as executor:
260
+ # if tts_choice == "Eleven Labs":
261
+ # audio_future = executor.submit(generate_audio_elevenlabs, response)
262
+ # elif tts_choice == "Parler-TTS":
263
+ # audio_future = executor.submit(generate_audio_parler_tts, response)
264
+ # elif tts_choice == "MARS5":
265
+ # audio_future = executor.submit(generate_audio_mars5, response)
266
+
267
+
268
+ # for character in response:
269
+ # history[-1][1] += character
270
+ # time.sleep(0.05)
271
+ # yield history, None
272
+
273
+ # audio_path = audio_future.result()
274
+ # yield history, audio_path
275
+
276
+ # def add_message(history, message):
277
+ # history.append((message, None))
278
+ # return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
279
+
280
+ # def print_like_dislike(x: gr.LikeData):
281
+ # print(x.index, x.value, x.liked)
282
+
283
+ # def extract_addresses(response):
284
+ # if not isinstance(response, str):
285
+ # response = str(response)
286
+ # address_patterns = [
287
+ # r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
288
+ # r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
289
+ # r'([A-Z].*,\sAL\s\d{5})',
290
+ # r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
291
+ # r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
292
+ # r'(\d{2}.*\sStreets)',
293
+ # r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
294
+ # r'([a-zA-Z]\s Birmingham)'
295
+ # ]
296
+ # addresses = []
297
+ # for pattern in address_patterns:
298
+ # addresses.extend(re.findall(pattern, response))
299
+ # return addresses
300
+
301
+ # all_addresses = []
302
+
303
+ # def generate_map(location_names):
304
+ # global all_addresses
305
+ # all_addresses.extend(location_names)
306
+
307
+ # api_key = os.environ['GOOGLEMAPS_API_KEY']
308
+ # gmaps = GoogleMapsClient(key=api_key)
309
+
310
+ # m = folium.Map(location=[33.5175,-86.809444], zoom_start=16)
311
+
312
+ # for location_name in all_addresses:
313
+ # geocode_result = gmaps.geocode(location_name)
314
+ # if geocode_result:
315
+ # location = geocode_result[0]['geometry']['location']
316
+ # folium.Marker(
317
+ # [location['lat'], 'lng'],
318
+ # tooltip=f"{geocode_result[0]['formatted_address']}"
319
+ # ).add_to(m)
320
+
321
+ # map_html = m._repr_html_()
322
+ # return map_html
323
+
324
+ # def fetch_local_news():
325
+ # api_key = os.environ['SERP_API']
326
+ # url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
327
+ # response = requests.get(url)
328
+ # if response.status_code == 200:
329
+ # results = response.json().get("news_results", [])
330
+ # news_html = """
331
+ # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
332
+ # <style>
333
+ # .news-item {
334
+ # font-family: 'Verdana', sans-serif;
335
+ # color: #333;
336
+ # background-color: #f0f8ff;
337
+ # margin-bottom: 15px;
338
+ # padding: 10px;
339
+ # border-radius: 5px;
340
+ # transition: box-shadow 0.3s ease, background-color 0.3s ease;
341
+ # font-weight: bold;
342
+ # }
343
+ # .news-item:hover {
344
+ # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
345
+ # background-color: #e6f7ff;
346
+ # }
347
+ # .news-item a {
348
+ # color: #1E90FF;
349
+ # text-decoration: none;
350
+ # font-weight: bold;
351
+ # }
352
+ # .news-item a:hover {
353
+ # text-decoration: underline;
354
+ # }
355
+ # .news-preview {
356
+ # position: absolute;
357
+ # display: none;
358
+ # border: 1px solid #ccc;
359
+ # border-radius: 5px;
360
+ # box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
361
+ # background-color: white;
362
+ # z-index: 1000;
363
+ # max-width: 300px;
364
+ # padding: 10px;
365
+ # font-family: 'Verdana', sans-serif;
366
+ # color: #333;
367
+ # }
368
+ # </style>
369
+ # <script>
370
+ # function showPreview(event, previewContent) {
371
+ # var previewBox = document.getElementById('news-preview');
372
+ # previewBox.innerHTML = previewContent;
373
+ # previewBox.style.left = event.pageX + 'px';
374
+ # previewBox.style.top = event.pageY + 'px';
375
+ # previewBox.style.display = 'block';
376
+ # }
377
+ # function hidePreview() {
378
+ # var previewBox = document.getElementById('news-preview');
379
+ # previewBox.style.display = 'none';
380
+ # }
381
+ # </script>
382
+ # <div id="news-preview" class="news-preview"></div>
383
+ # """
384
+ # for index, result in enumerate(results[:7]):
385
+ # title = result.get("title", "No title")
386
+ # link = result.get("link", "#")
387
+ # snippet = result.get("snippet", "")
388
+ # news_html += f"""
389
+ # <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
390
+ # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
391
+ # <p>{snippet}</p>
392
+ # </div>
393
+ # """
394
+ # return news_html
395
+ # else:
396
+ # return "<p>Failed to fetch local news</p>"
397
+
398
+ # import numpy as np
399
+ # import torch
400
+ # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
401
+
402
+ # model_id = 'openai/whisper-large-v3'
403
+ # device = "cuda:0" if torch.cuda.is_available() else "cpu"
404
+ # torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
405
+ # model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
406
+ # processor = AutoProcessor.from_pretrained(model_id)
407
+
408
+ # pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
409
+
410
+ # base_audio_drive = "/data/audio"
411
+
412
+ # def transcribe_function(stream, new_chunk):
413
+ # try:
414
+ # sr, y = new_chunk[0], new_chunk[1]
415
+ # except TypeError:
416
+ # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
417
+ # return stream, "", None
418
+
419
+ # y = y.astype(np.float32) / np.max(np.abs(y))
420
+
421
+ # if stream is not None:
422
+ # stream = np.concatenate([stream, y])
423
+ # else:
424
+ # stream = y
425
+
426
+ # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
427
+
428
+ # full_text = result.get("text", "")
429
+
430
+ # return stream, full_text, result
431
+
432
+ # def update_map_with_response(history):
433
+ # if not history:
434
+ # return ""
435
+ # response = history[-1][1]
436
+ # addresses = extract_addresses(response)
437
+ # return generate_map(addresses)
438
+
439
+ # def clear_textbox():
440
+ # return ""
441
+
442
+ # def show_map_if_details(history,choice):
443
+ # if choice in ["Details", "Conversational"]:
444
+ # return gr.update(visible=True), update_map_with_response(history)
445
+ # else:
446
+ # return gr.update(visible=False), ""
447
+
448
+ # def generate_audio_elevenlabs(text):
449
+ # XI_API_KEY = os.environ['ELEVENLABS_API']
450
+ # VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
451
+ # tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
452
+ # headers = {
453
+ # "Accept": "application/json",
454
+ # "xi-api-key": XI_API_KEY
455
+ # }
456
+ # data = {
457
+ # "text": str(text),
458
+ # "model_id": "eleven_multilingual_v2",
459
+ # "voice_settings": {
460
+ # "stability": 1.0,
461
+ # "similarity_boost": 0.0,
462
+ # "style": 0.60,
463
+ # "use_speaker_boost": False
464
+ # }
465
+ # }
466
+ # response = requests.post(tts_url, headers=headers, json=data, stream=True)
467
+ # if response.ok:
468
+ # with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
469
+ # for chunk in response.iter_content(chunk_size=1024):
470
+ # f.write(chunk)
471
+ # temp_audio_path = f.name
472
+ # logging.debug(f"Audio saved to {temp_audio_path}")
473
+ # return temp_audio_path
474
+ # else:
475
+ # logging.error(f"Error generating audio: {response.text}")
476
+ # return None
477
+
478
+ # repo_id = "parler-tts/parler-tts-mini-expresso"
479
+
480
+ # parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
481
+ # parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
482
+ # parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
483
+
484
+ # SAMPLE_RATE = parler_feature_extractor.sampling_rate
485
+ # SEED = 42
486
+
487
+ # def preprocess(text):
488
+ # number_normalizer = EnglishNumberNormalizer()
489
+ # text = number_normalizer(text).strip()
490
+ # if text[-1] not in punctuation:
491
+ # text = f"{text}."
492
+
493
+ # abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
494
+
495
+ # def separate_abb(chunk):
496
+ # chunk = chunk.replace(".", "")
497
+ # return " ".join(chunk)
498
+
499
+ # abbreviations = re.findall(abbreviations_pattern, text)
500
+ # for abv in abbreviations:
501
+ # if abv in text:
502
+ # text = text.replace(abv, separate_abb(abv))
503
+ # return text
504
+
505
+ # def chunk_text(text, max_length=250):
506
+ # words = text.split()
507
+ # chunks = []
508
+ # current_chunk = []
509
+ # current_length = 0
510
+
511
+ # for word in words:
512
+ # if current_length + len(word) + 1 <= max_length:
513
+ # current_chunk.append(word)
514
+ # current_length += len(word) + 1
515
+ # else:
516
+ # chunks.append(' '.join(current_chunk))
517
+ # current_chunk = [word]
518
+ # current_length = len(word) + 1
519
+
520
+ # if current_chunk:
521
+ # chunks.append(' '.join(current_chunk))
522
+
523
+ # return chunks
524
+
525
+ # def generate_audio_parler_tts(text):
526
+ # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
527
+ # chunks = chunk_text(preprocess(text))
528
+ # audio_segments = []
529
+
530
+ # for chunk in chunks:
531
+ # inputs = parler_tokenizer(description, return_tensors="pt").to(device)
532
+ # prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
533
+
534
+ # set_seed(SEED)
535
+ # generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
536
+ # audio_arr = generation.cpu().numpy().squeeze()
537
+
538
+ # temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
539
+ # write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
540
+ # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
541
+
542
+ # combined_audio = sum(audio_segments)
543
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio.wav")
544
+ # combined_audio.export(combined_audio_path, format="wav")
545
+
546
+ # logging.debug(f"Audio saved to {combined_audio_path}")
547
+ # return combined_audio_path
548
+
549
+ # # Load the MARS5 model
550
+ # mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
551
+
552
+ # def generate_audio_mars5(text):
553
+ # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
554
+ # kwargs_dict = {
555
+ # 'temperature': 0.8,
556
+ # 'top_k': -1,
557
+ # 'top_p': 0.2,
558
+ # 'typical_p': 1.0,
559
+ # 'freq_penalty': 2.6,
560
+ # 'presence_penalty': 0.4,
561
+ # 'rep_penalty_window': 100,
562
+ # 'max_prompt_phones': 360,
563
+ # 'deep_clone': True,
564
+ # 'nar_guidance_w': 3
565
+ # }
566
+
567
+ # chunks = chunk_text(preprocess(text))
568
+ # audio_segments = []
569
+
570
+ # for chunk in chunks:
571
+ # wav = torch.zeros(1, mars5.sr) # Use a placeholder silent audio for the reference
572
+ # cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
573
+ # ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
574
+
575
+
576
+ # temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
577
+ # torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
578
+ # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
579
+
580
+ # combined_audio = sum(audio_segments)
581
+ # combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
582
+ # combined_audio.export(combined_audio_path, format="wav")
583
+
584
+ # logging.debug(f"Audio saved to {combined_audio_path}")
585
+ # return combined_audio_path
586
+
587
+ # pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
588
+ # pipe.to(device)
589
+
590
+ # def generate_image(prompt):
591
+ # with torch.cuda.amp.autocast():
592
+ # image = pipe(
593
+ # prompt,
594
+ # num_inference_steps=28,
595
+ # guidance_scale=3.0,
596
+ # ).images[0]
597
+ # return image
598
+
599
+ # hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Bentley coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
600
+ # hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
601
+ # hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
602
+
603
+ # def update_images():
604
+ # image_1 = generate_image(hardcoded_prompt_1)
605
+ # image_2 = generate_image(hardcoded_prompt_2)
606
+ # image_3 = generate_image(hardcoded_prompt_3)
607
+ # return image_1, image_2, image_3
608
+
609
+ # with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
610
+ # with gr.Row():
611
+ # with gr.Column():
612
+ # state = gr.State()
613
+
614
+ # chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
615
+ # choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
616
+
617
+ # gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
618
+ # chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
619
+ # chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
620
+ # tts_choice = gr.Radio(label="Select TTS System", choices=["Eleven Labs", "Parler-TTS", "MARS5"], value="Eleven Labs")
621
+ # bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
622
+ # bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
623
+ # chatbot.like(print_like_dislike, None, None)
624
+ # clear_button = gr.Button("Clear")
625
+ # clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
626
+
627
+ # audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
628
+ # audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")
629
+
630
+ # with gr.Column():
631
+ # image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
632
+ # image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
633
+ # image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
634
+
635
+ # refresh_button = gr.Button("Refresh Images")
636
+ # refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
637
+
638
+ # demo.queue()
639
+ # demo.launch(share=True)
640
+
641
+
642
  import gradio as gr
643
  import requests
644
  import os
 
904
  audio_future = executor.submit(generate_audio_parler_tts, response)
905
  elif tts_choice == "MARS5":
906
  audio_future = executor.submit(generate_audio_mars5, response)
907
+ elif tts_choice == "Coqui":
908
+ audio_future = executor.submit(generate_audio_coqui, response)
909
 
910
  for character in response:
911
  history[-1][1] += character
 
956
  if geocode_result:
957
  location = geocode_result[0]['geometry']['location']
958
  folium.Marker(
959
+ [location['lat'], location['lng']],
960
  tooltip=f"{geocode_result[0]['formatted_address']}"
961
  ).add_to(m)
962
 
 
973
  <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
974
  <style>
975
  .news-item {
976
+ font-family: 'Verdana', sans-serif; color: #333;
 
977
  background-color: #f0f8ff;
978
  margin-bottom: 15px;
979
  padding: 10px;
 
1225
  logging.debug(f"Audio saved to {combined_audio_path}")
1226
  return combined_audio_path
1227
 
1228
+ # Initialize Coqui XTTS
1229
+ os.system('python -m unidic download')
1230
+ os.environ["COQUI_TOS_AGREED"] = "1"
1231
+
1232
+ from TTS.api import TTS
1233
+ from TTS.tts.configs.xtts_config import XttsConfig
1234
+ from TTS.tts.models.xtts import Xtts
1235
+ from TTS.utils.generic_utils import get_user_data_dir
1236
+ from huggingface_hub import HfApi
1237
+
1238
+ api = HfApi(token=hf_token)
1239
+ repo_id = "coqui/xtts"
1240
+
1241
+ model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
1242
+ ModelManager().download_model(model_name)
1243
+ model_path = os.path.join(get_user_data_dir("tts"), model_name.replace("/", "--"))
1244
+ config = XttsConfig()
1245
+ config.load_json(os.path.join(model_path, "config.json"))
1246
+ model = Xtts.init_from_config(config)
1247
+ model.load_checkpoint(
1248
+ config,
1249
+ checkpoint_path=os.path.join(model_path, "model.pth"),
1250
+ vocab_path=os.path.join(model_path, "vocab.json"),
1251
+ eval=True,
1252
+ use_deepspeed=True,
1253
+ )
1254
+ model.cuda()
1255
+
1256
+ def generate_audio_coqui(text):
1257
+ language = "en"
1258
+ use_mic = False
1259
+ voice_cleanup = False
1260
+ no_lang_auto_detect = False
1261
+ agree = True
1262
+ mic_file_path = None
1263
+ audio_file_pth = None
1264
+
1265
+ if agree:
1266
+ if language not in config.languages:
1267
+ raise Exception("Language not supported")
1268
+
1269
+ if use_mic:
1270
+ if mic_file_path is not None:
1271
+ speaker_wav = mic_file_path
1272
+ else:
1273
+ raise Exception("Microphone input required")
1274
+ else:
1275
+ speaker_wav = audio_file_pth
1276
+
1277
+ lowpass_highpass = "lowpass=8000,highpass=75," if voice_cleanup else ""
1278
+ trim_silence = "areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02," if voice_cleanup else ""
1279
+
1280
+ out_filename = speaker_wav + str(uuid.uuid4()) + ".wav" if voice_cleanup else speaker_wav
1281
+ if voice_cleanup:
1282
+ shell_command = f"./ffmpeg -y -i {speaker_wav} -af {lowpass_highpass}{trim_silence} {out_filename}".split(" ")
1283
+ subprocess.run([item for item in shell_command], capture_output=False, text=True, check=True)
1284
+ speaker_wav = out_filename
1285
+
1286
+ t_latent = time.time()
1287
+ gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=speaker_wav, gpt_cond_len=30, gpt_cond_chunk_len=4, max_ref_length=60)
1288
+ latent_calculation_time = time.time() - t_latent
1289
+
1290
+ prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", text)
1291
+ out = model.inference(prompt, language, gpt_cond_latent, speaker_embedding, repetition_penalty=5.0, temperature=0.75)
1292
+ torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
1293
+ return "output.wav"
1294
+ else:
1295
+ raise Exception("Terms & Conditions not accepted")
1296
+
1297
  pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
1298
  pipe.to(device)
1299
 
 
1327
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
1328
  chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
1329
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
1330
+ tts_choice = gr.Radio(label="Select TTS System", choices=["Eleven Labs", "Parler-TTS", "MARS5", "Coqui"], value="Eleven Labs")
1331
  bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
1332
  bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
1333
  chatbot.like(print_like_dislike, None, None)
 
1369
 
1370
 
1371
 
1372
+
1373
 
1374
 
1375
  # import gradio as gr