Pijush2023 commited on
Commit
a69f193
·
verified ·
1 Parent(s): a078c5d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -706
app.py CHANGED
@@ -1,650 +1,3 @@
1
- # import gradio as gr
2
- # import requests
3
- # import os
4
- # import time
5
- # import re
6
- # import logging
7
- # import tempfile
8
- # import folium
9
- # import concurrent.futures
10
- # import torch
11
- # from PIL import Image
12
- # from datetime import datetime
13
- # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
14
- # from googlemaps import Client as GoogleMapsClient
15
- # from gtts import gTTS
16
- # from diffusers import StableDiffusionPipeline
17
- # from langchain_openai import OpenAIEmbeddings, ChatOpenAI
18
- # from langchain_pinecone import PineconeVectorStore
19
- # from langchain.prompts import PromptTemplate
20
- # from langchain.chains import RetrievalQA
21
- # from langchain.chains.conversation.memory import ConversationBufferWindowMemory
22
- # from langchain.agents import Tool, initialize_agent
23
- # from huggingface_hub import login
24
- # from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
25
- # from parler_tts import ParlerTTSForConditionalGeneration
26
- # from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
27
- # from scipy.io.wavfile import write as write_wav
28
- # from pydub import AudioSegment
29
- # from string import punctuation
30
- # import librosa
31
- # from pathlib import Path
32
- # import torchaudio
33
-
34
- # # Check if the token is already set in the environment variables
35
- # hf_token = os.getenv("HF_TOKEN")
36
- # if hf_token is None:
37
- # print("Please set your Hugging Face token in the environment variables.")
38
- # else:
39
- # login(token=hf_token)
40
-
41
- # logging.basicConfig(level=logging.DEBUG)
42
-
43
- # embeddings = OpenAIEmbeddings(api_key=os.environ['OPENAI_API_KEY'])
44
-
45
- # from pinecone import Pinecone
46
- # pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
47
-
48
- # index_name = "birmingham-dataset"
49
- # vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)
50
- # retriever = vectorstore.as_retriever(search_kwargs={'k': 5})
51
-
52
- # chat_model = ChatOpenAI(api_key=os.environ['OPENAI_API_KEY'], temperature=0, model='gpt-4o')
53
-
54
- # conversational_memory = ConversationBufferWindowMemory(
55
- # memory_key='chat_history',
56
- # k=10,
57
- # return_messages=True
58
- # )
59
-
60
- # def get_current_time_and_date():
61
- # now = datetime.now()
62
- # return now.strftime("%Y-%m-%d %H:%M:%S")
63
-
64
- # current_time_and_date = get_current_time_and_date()
65
-
66
- # def fetch_local_events():
67
- # api_key = os.environ['SERP_API']
68
- # url = f'https://serpapi.com/search.json?engine=google_events&q=Events+in+Birmingham&hl=en&gl=us&api_key={api_key}'
69
- # response = requests.get(url)
70
- # if response.status_code == 200:
71
- # events_results = response.json().get("events_results", [])
72
- # events_html = """
73
- # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Events</h2>
74
- # <style>
75
- # .event-item {
76
- # font-family: 'Verdana', sans-serif;
77
- # color: #333;
78
- # margin-bottom: 15px;
79
- # padding: 10px;
80
- # font-weight: bold;
81
- # }
82
- # .event-item a {
83
- # color: #1E90FF;
84
- # text-decoration: none;
85
- # }
86
- # .event-item a:hover {
87
- # text-decoration: underline;
88
- # }
89
- # </style>
90
- # """
91
- # for index, event in enumerate(events_results):
92
- # title = event.get("title", "No title")
93
- # date = event.get("date", "No date")
94
- # location = event.get("address", "No location")
95
- # link = event.get("link", "#")
96
- # events_html += f"""
97
- # <div class="event-item">
98
- # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
99
- # <p>Date: {date}<br>Location: {location}</p>
100
- # </div>
101
- # """
102
- # return events_html
103
- # else:
104
- # return "<p>Failed to fetch local events</p>"
105
-
106
- # def fetch_local_weather():
107
- # try:
108
- # api_key = os.environ['WEATHER_API']
109
- # url = f'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/birmingham?unitGroup=metric&include=events%2Calerts%2Chours%2Cdays%2Ccurrent&key={api_key}'
110
- # response = requests.get(url)
111
- # response.raise_for_status()
112
- # jsonData = response.json()
113
-
114
- # current_conditions = jsonData.get("currentConditions", {})
115
- # temp_celsius = current_conditions.get("temp", "N/A")
116
-
117
- # if temp_celsius != "N/A":
118
- # temp_fahrenheit = int((temp_celsius * 9/5) + 32)
119
- # else:
120
- # temp_fahrenheit = "N/A"
121
-
122
- # condition = current_conditions.get("conditions", "N/A")
123
- # humidity = current_conditions.get("humidity", "N/A")
124
-
125
- # weather_html = f"""
126
- # <div class="weather-theme">
127
- # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Local Weather</h2>
128
- # <div class="weather-content">
129
- # <div class="weather-icon">
130
- # <img src="https://www.weatherbit.io/static/img/icons/{get_weather_icon(condition)}.png" alt="{condition}" style="width: 100px; height: 100px;">
131
- # </div>
132
- # <div class="weather-details">
133
- # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Temperature: {temp_fahrenheit}°F</p>
134
- # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Condition: {condition}</p>
135
- # <p style="font-family: 'Verdana', sans-serif; color: #333; font-size: 1.2em;">Humidity: {humidity}%</p>
136
- # </div>
137
- # </div>
138
- # </div>
139
- # <style>
140
- # .weather-theme {{
141
- # animation: backgroundAnimation 10s infinite alternate;
142
- # border-radius: 10px;
143
- # padding: 10px;
144
- # margin-bottom: 15px;
145
- # background: linear-gradient(45deg, #ffcc33, #ff6666, #ffcc33, #ff6666);
146
- # background-size: 400% 400%;
147
- # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
148
- # transition: box-shadow 0.3s ease, background-color 0.3s ease;
149
- # }}
150
- # .weather-theme:hover {{
151
- # box-shadow: 0 8px 16px rgba(0, 0, 0, 0.2);
152
- # background-position: 100% 100%;
153
- # }}
154
- # @keyframes backgroundAnimation {{
155
- # 0% {{ background-position: 0% 50%; }}
156
- # 100% {{ background-position: 100% 50%; }}
157
- # }}
158
- # .weather-content {{
159
- # display: flex;
160
- # align-items: center;
161
- # }}
162
- # .weather-icon {{
163
- # flex: 1;
164
- # }}
165
- # .weather-details {{
166
- # flex: 3;
167
- # }}
168
- # </style>
169
- # """
170
- # return weather_html
171
- # except requests.exceptions.RequestException as e:
172
- # return f"<p>Failed to fetch local weather: {e}</p>"
173
-
174
- # def get_weather_icon(condition):
175
- # condition_map = {
176
- # "Clear": "c01d",
177
- # "Partly Cloudy": "c02d",
178
- # "Cloudy": "c03d",
179
- # "Overcast": "c04d",
180
- # "Mist": "a01d",
181
- # "Patchy rain possible": "r01d",
182
- # "Light rain": "r02d",
183
- # "Moderate rain": "r03d",
184
- # "Heavy rain": "r04d",
185
- # "Snow": "s01d",
186
- # "Thunderstorm": "t01d",
187
- # "Fog": "a05d",
188
- # }
189
- # return condition_map.get(condition, "c04d")
190
-
191
- # template1 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on weather being a sunny bright day and the today's date is 1st july 2024, use the following pieces of context,
192
- # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
193
- # Use fifteen sentences maximum. Keep the answer as detailed as possible. Always include the address, time, date, and
194
- # event type and description. Always say "It was my pleasure!" at the end of the answer.
195
- # {context}
196
- # Question: {question}
197
- # Helpful Answer:"""
198
-
199
- # template2 = """You are an expert concierge who is helpful and a renowned guide for Birmingham,Alabama. Based on today's weather being a sunny bright day and today's date is 1st july 2024, take the location or address but don't show the location or address on the output prompts. Use the following pieces of context,
200
- # memory, and message history, along with your knowledge of perennial events in Birmingham,Alabama, to answer the question at the end. If you don't know the answer, just say "Homie, I need to get more data for this," and don't try to make up an answer.
201
- # Keep the answer short and sweet and crisp. Always say "It was my pleasure!" at the end of the answer.
202
- # {context}
203
- # Question: {question}
204
- # Helpful Answer:"""
205
-
206
- # QA_CHAIN_PROMPT_1 = PromptTemplate(input_variables=["context", "question"], template=template1)
207
- # QA_CHAIN_PROMPT_2 = PromptTemplate(input_variables=["context", "question"], template=template2)
208
-
209
- # def build_qa_chain(prompt_template):
210
- # qa_chain = RetrievalQA.from_chain_type(
211
- # llm=chat_model,
212
- # chain_type="stuff",
213
- # retriever=retriever,
214
- # chain_type_kwargs={"prompt": prompt_template}
215
- # )
216
- # tools = [
217
- # Tool(
218
- # name='Knowledge Base',
219
- # func=qa_chain,
220
- # description='Use this tool when answering general knowledge queries to get more information about the topic'
221
- # )
222
- # ]
223
- # return qa_chain, tools
224
-
225
- # def initialize_agent_with_prompt(prompt_template):
226
- # qa_chain, tools = build_qa_chain(prompt_template)
227
- # agent = initialize_agent(
228
- # agent='chat-conversational-react-description',
229
- # tools=tools,
230
- # llm=chat_model,
231
- # verbose=False,
232
- # max_iteration=5,
233
- # early_stopping_method='generate',
234
- # memory=conversational_memory
235
- # )
236
- # return agent
237
-
238
- # def generate_answer(message, choice):
239
- # logging.debug(f"generate_answer called with prompt_choice: {choice}")
240
-
241
- # if choice == "Details":
242
- # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_1)
243
- # elif choice == "Conversational":
244
- # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
245
- # else:
246
- # logging.error(f"Invalid prompt_choice: {choice}. Defaulting to 'Conversational'")
247
- # agent = initialize_agent_with_prompt(QA_CHAIN_PROMPT_2)
248
- # response = agent(message)
249
-
250
- # addresses = extract_addresses(response['output'])
251
- # return response['output'], addresses
252
-
253
- # def bot(history, choice, tts_choice):
254
- # if not history:
255
- # return history
256
- # response, addresses = generate_answer(history[-1][0], choice)
257
- # history[-1][1] = ""
258
-
259
- # with concurrent.futures.ThreadPoolExecutor() as executor:
260
- # if tts_choice == "Eleven Labs":
261
- # audio_future = executor.submit(generate_audio_elevenlabs, response)
262
- # elif tts_choice == "Parler-TTS":
263
- # audio_future = executor.submit(generate_audio_parler_tts, response)
264
- # elif tts_choice == "MARS5":
265
- # audio_future = executor.submit(generate_audio_mars5, response)
266
-
267
-
268
- # for character in response:
269
- # history[-1][1] += character
270
- # time.sleep(0.05)
271
- # yield history, None
272
-
273
- # audio_path = audio_future.result()
274
- # yield history, audio_path
275
-
276
- # def add_message(history, message):
277
- # history.append((message, None))
278
- # return history, gr.Textbox(value="", interactive=True, placeholder="Enter message or upload file...", show_label=False)
279
-
280
- # def print_like_dislike(x: gr.LikeData):
281
- # print(x.index, x.value, x.liked)
282
-
283
- # def extract_addresses(response):
284
- # if not isinstance(response, str):
285
- # response = str(response)
286
- # address_patterns = [
287
- # r'([A-Z].*,\sBirmingham,\sAL\s\d{5})',
288
- # r'(\d{4}\s.*,\sBirmingham,\sAL\s\d{5})',
289
- # r'([A-Z].*,\sAL\s\d{5})',
290
- # r'([A-Z].*,.*\sSt,\sBirmingham,\sAL\s\d{5})',
291
- # r'([A-Z].*,.*\sStreets,\sBirmingham,\sAL\s\d{5})',
292
- # r'(\d{2}.*\sStreets)',
293
- # r'([A-Z].*\s\d{2},\sBirmingham,\sAL\s\d{5})',
294
- # r'([a-zA-Z]\s Birmingham)'
295
- # ]
296
- # addresses = []
297
- # for pattern in address_patterns:
298
- # addresses.extend(re.findall(pattern, response))
299
- # return addresses
300
-
301
- # all_addresses = []
302
-
303
- # def generate_map(location_names):
304
- # global all_addresses
305
- # all_addresses.extend(location_names)
306
-
307
- # api_key = os.environ['GOOGLEMAPS_API_KEY']
308
- # gmaps = GoogleMapsClient(key=api_key)
309
-
310
- # m = folium.Map(location=[33.5175,-86.809444], zoom_start=16)
311
-
312
- # for location_name in all_addresses:
313
- # geocode_result = gmaps.geocode(location_name)
314
- # if geocode_result:
315
- # location = geocode_result[0]['geometry']['location']
316
- # folium.Marker(
317
- # [location['lat'], 'lng'],
318
- # tooltip=f"{geocode_result[0]['formatted_address']}"
319
- # ).add_to(m)
320
-
321
- # map_html = m._repr_html_()
322
- # return map_html
323
-
324
- # def fetch_local_news():
325
- # api_key = os.environ['SERP_API']
326
- # url = f'https://serpapi.com/search.json?engine=google_news&q=birmingham headline&api_key={api_key}'
327
- # response = requests.get(url)
328
- # if response.status_code == 200:
329
- # results = response.json().get("news_results", [])
330
- # news_html = """
331
- # <h2 style="font-family: 'Georgia', serif; color: #ff0000; background-color: #f8f8f8; padding: 10px; border-radius: 10px;">Birmingham Today</h2>
332
- # <style>
333
- # .news-item {
334
- # font-family: 'Verdana', sans-serif;
335
- # color: #333;
336
- # background-color: #f0f8ff;
337
- # margin-bottom: 15px;
338
- # padding: 10px;
339
- # border-radius: 5px;
340
- # transition: box-shadow 0.3s ease, background-color 0.3s ease;
341
- # font-weight: bold;
342
- # }
343
- # .news-item:hover {
344
- # box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
345
- # background-color: #e6f7ff;
346
- # }
347
- # .news-item a {
348
- # color: #1E90FF;
349
- # text-decoration: none;
350
- # font-weight: bold;
351
- # }
352
- # .news-item a:hover {
353
- # text-decoration: underline;
354
- # }
355
- # .news-preview {
356
- # position: absolute;
357
- # display: none;
358
- # border: 1px solid #ccc;
359
- # border-radius: 5px;
360
- # box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
361
- # background-color: white;
362
- # z-index: 1000;
363
- # max-width: 300px;
364
- # padding: 10px;
365
- # font-family: 'Verdana', sans-serif;
366
- # color: #333;
367
- # }
368
- # </style>
369
- # <script>
370
- # function showPreview(event, previewContent) {
371
- # var previewBox = document.getElementById('news-preview');
372
- # previewBox.innerHTML = previewContent;
373
- # previewBox.style.left = event.pageX + 'px';
374
- # previewBox.style.top = event.pageY + 'px';
375
- # previewBox.style.display = 'block';
376
- # }
377
- # function hidePreview() {
378
- # var previewBox = document.getElementById('news-preview');
379
- # previewBox.style.display = 'none';
380
- # }
381
- # </script>
382
- # <div id="news-preview" class="news-preview"></div>
383
- # """
384
- # for index, result in enumerate(results[:7]):
385
- # title = result.get("title", "No title")
386
- # link = result.get("link", "#")
387
- # snippet = result.get("snippet", "")
388
- # news_html += f"""
389
- # <div class="news-item" onmouseover="showPreview(event, '{snippet}')" onmouseout="hidePreview()">
390
- # <a href='{link}' target='_blank'>{index + 1}. {title}</a>
391
- # <p>{snippet}</p>
392
- # </div>
393
- # """
394
- # return news_html
395
- # else:
396
- # return "<p>Failed to fetch local news</p>"
397
-
398
- # import numpy as np
399
- # import torch
400
- # from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
401
-
402
- # model_id = 'openai/whisper-large-v3'
403
- # device = "cuda:0" if torch.cuda.is_available() else "cpu"
404
- # torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
405
- # model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
406
- # processor = AutoProcessor.from_pretrained(model_id)
407
-
408
- # pipe_asr = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, max_new_tokens=128, chunk_length_s=15, batch_size=16, torch_dtype=torch_dtype, device=device, return_timestamps=True)
409
-
410
- # base_audio_drive = "/data/audio"
411
-
412
- # def transcribe_function(stream, new_chunk):
413
- # try:
414
- # sr, y = new_chunk[0], new_chunk[1]
415
- # except TypeError:
416
- # print(f"Error chunk structure: {type(new_chunk)}, content: {new_chunk}")
417
- # return stream, "", None
418
-
419
- # y = y.astype(np.float32) / np.max(np.abs(y))
420
-
421
- # if stream is not None:
422
- # stream = np.concatenate([stream, y])
423
- # else:
424
- # stream = y
425
-
426
- # result = pipe_asr({"array": stream, "sampling_rate": sr}, return_timestamps=False)
427
-
428
- # full_text = result.get("text", "")
429
-
430
- # return stream, full_text, result
431
-
432
- # def update_map_with_response(history):
433
- # if not history:
434
- # return ""
435
- # response = history[-1][1]
436
- # addresses = extract_addresses(response)
437
- # return generate_map(addresses)
438
-
439
- # def clear_textbox():
440
- # return ""
441
-
442
- # def show_map_if_details(history,choice):
443
- # if choice in ["Details", "Conversational"]:
444
- # return gr.update(visible=True), update_map_with_response(history)
445
- # else:
446
- # return gr.update(visible=False), ""
447
-
448
- # def generate_audio_elevenlabs(text):
449
- # XI_API_KEY = os.environ['ELEVENLABS_API']
450
- # VOICE_ID = 'd9MIrwLnvDeH7aZb61E9'
451
- # tts_url = f"https://api.elevenlabs.io/v1/text-to-speech/{VOICE_ID}/stream"
452
- # headers = {
453
- # "Accept": "application/json",
454
- # "xi-api-key": XI_API_KEY
455
- # }
456
- # data = {
457
- # "text": str(text),
458
- # "model_id": "eleven_multilingual_v2",
459
- # "voice_settings": {
460
- # "stability": 1.0,
461
- # "similarity_boost": 0.0,
462
- # "style": 0.60,
463
- # "use_speaker_boost": False
464
- # }
465
- # }
466
- # response = requests.post(tts_url, headers=headers, json=data, stream=True)
467
- # if response.ok:
468
- # with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as f:
469
- # for chunk in response.iter_content(chunk_size=1024):
470
- # f.write(chunk)
471
- # temp_audio_path = f.name
472
- # logging.debug(f"Audio saved to {temp_audio_path}")
473
- # return temp_audio_path
474
- # else:
475
- # logging.error(f"Error generating audio: {response.text}")
476
- # return None
477
-
478
- # repo_id = "parler-tts/parler-tts-mini-expresso"
479
-
480
- # parler_model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
481
- # parler_tokenizer = AutoTokenizer.from_pretrained(repo_id)
482
- # parler_feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
483
-
484
- # SAMPLE_RATE = parler_feature_extractor.sampling_rate
485
- # SEED = 42
486
-
487
- # def preprocess(text):
488
- # number_normalizer = EnglishNumberNormalizer()
489
- # text = number_normalizer(text).strip()
490
- # if text[-1] not in punctuation:
491
- # text = f"{text}."
492
-
493
- # abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
494
-
495
- # def separate_abb(chunk):
496
- # chunk = chunk.replace(".", "")
497
- # return " ".join(chunk)
498
-
499
- # abbreviations = re.findall(abbreviations_pattern, text)
500
- # for abv in abbreviations:
501
- # if abv in text:
502
- # text = text.replace(abv, separate_abb(abv))
503
- # return text
504
-
505
- # def chunk_text(text, max_length=250):
506
- # words = text.split()
507
- # chunks = []
508
- # current_chunk = []
509
- # current_length = 0
510
-
511
- # for word in words:
512
- # if current_length + len(word) + 1 <= max_length:
513
- # current_chunk.append(word)
514
- # current_length += len(word) + 1
515
- # else:
516
- # chunks.append(' '.join(current_chunk))
517
- # current_chunk = [word]
518
- # current_length = len(word) + 1
519
-
520
- # if current_chunk:
521
- # chunks.append(' '.join(current_chunk))
522
-
523
- # return chunks
524
-
525
- # def generate_audio_parler_tts(text):
526
- # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
527
- # chunks = chunk_text(preprocess(text))
528
- # audio_segments = []
529
-
530
- # for chunk in chunks:
531
- # inputs = parler_tokenizer(description, return_tensors="pt").to(device)
532
- # prompt = parler_tokenizer(chunk, return_tensors="pt").to(device)
533
-
534
- # set_seed(SEED)
535
- # generation = parler_model.generate(input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids)
536
- # audio_arr = generation.cpu().numpy().squeeze()
537
-
538
- # temp_audio_path = os.path.join(tempfile.gettempdir(), f"parler_tts_audio_{len(audio_segments)}.wav")
539
- # write_wav(temp_audio_path, SAMPLE_RATE, audio_arr)
540
- # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
541
-
542
- # combined_audio = sum(audio_segments)
543
- # combined_audio_path = os.path.join(tempfile.gettempdir(), "parler_tts_combined_audio.wav")
544
- # combined_audio.export(combined_audio_path, format="wav")
545
-
546
- # logging.debug(f"Audio saved to {combined_audio_path}")
547
- # return combined_audio_path
548
-
549
- # # Load the MARS5 model
550
- # mars5, config_class = torch.hub.load('Camb-ai/mars5-tts', 'mars5_english', trust_repo=True)
551
-
552
- # def generate_audio_mars5(text):
553
- # description = "Thomas speaks with emphasis and excitement at a moderate pace with high quality."
554
- # kwargs_dict = {
555
- # 'temperature': 0.8,
556
- # 'top_k': -1,
557
- # 'top_p': 0.2,
558
- # 'typical_p': 1.0,
559
- # 'freq_penalty': 2.6,
560
- # 'presence_penalty': 0.4,
561
- # 'rep_penalty_window': 100,
562
- # 'max_prompt_phones': 360,
563
- # 'deep_clone': True,
564
- # 'nar_guidance_w': 3
565
- # }
566
-
567
- # chunks = chunk_text(preprocess(text))
568
- # audio_segments = []
569
-
570
- # for chunk in chunks:
571
- # wav = torch.zeros(1, mars5.sr) # Use a placeholder silent audio for the reference
572
- # cfg = config_class(**{k: kwargs_dict[k] for k in kwargs_dict if k in config_class.__dataclass_fields__})
573
- # ar_codes, wav_out = mars5.tts(chunk, wav, "", cfg=cfg)
574
-
575
-
576
- # temp_audio_path = os.path.join(tempfile.gettempdir(), f"mars5_audio_{len(audio_segments)}.wav")
577
- # torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), mars5.sr)
578
- # audio_segments.append(AudioSegment.from_wav(temp_audio_path))
579
-
580
- # combined_audio = sum(audio_segments)
581
- # combined_audio_path = os.path.join(tempfile.gettempdir(), "mars5_combined_audio.wav")
582
- # combined_audio.export(combined_audio_path, format="wav")
583
-
584
- # logging.debug(f"Audio saved to {combined_audio_path}")
585
- # return combined_audio_path
586
-
587
- # pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
588
- # pipe.to(device)
589
-
590
- # def generate_image(prompt):
591
- # with torch.cuda.amp.autocast():
592
- # image = pipe(
593
- # prompt,
594
- # num_inference_steps=28,
595
- # guidance_scale=3.0,
596
- # ).images[0]
597
- # return image
598
-
599
- # hardcoded_prompt_1 = "Give a high quality photograph of a great looking red 2026 Bentley coupe against a skyline setting in the night, michael mann style in omaha enticing the consumer to buy this product"
600
- # hardcoded_prompt_2 = "A vibrant and dynamic football game scene in the style of Peter Paul Rubens, showcasing the intense match between Alabama and Nebraska. The players are depicted with the dramatic, muscular physiques and expressive faces typical of Rubens' style. The Alabama team is wearing their iconic crimson and white uniforms, while the Nebraska team is in their classic red and white attire. The scene is filled with action, with players in mid-motion, tackling, running, and catching the ball. The background features a grand stadium filled with cheering fans, banners, and the natural landscape in the distance. The colors are rich and vibrant, with a strong use of light and shadow to create depth and drama. The overall atmosphere captures the intensity and excitement of the game, infused with the grandeur and dynamism characteristic of Rubens' work."
601
- # hardcoded_prompt_3 = "Create a high-energy scene of a DJ performing on a large stage with vibrant lights, colorful lasers, a lively dancing crowd, and various electronic equipment in the background."
602
-
603
- # def update_images():
604
- # image_1 = generate_image(hardcoded_prompt_1)
605
- # image_2 = generate_image(hardcoded_prompt_2)
606
- # image_3 = generate_image(hardcoded_prompt_3)
607
- # return image_1, image_2, image_3
608
-
609
- # with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
610
- # with gr.Row():
611
- # with gr.Column():
612
- # state = gr.State()
613
-
614
- # chatbot = gr.Chatbot([], elem_id="RADAR:Channel 94.1", bubble_full_width=False)
615
- # choice = gr.Radio(label="Select Style", choices=["Details", "Conversational"], value="Conversational")
616
-
617
- # gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
618
- # chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
619
- # chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
620
- # tts_choice = gr.Radio(label="Select TTS System", choices=["Eleven Labs", "Parler-TTS", "MARS5"], value="Eleven Labs")
621
- # bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
622
- # bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
623
- # chatbot.like(print_like_dislike, None, None)
624
- # clear_button = gr.Button("Clear")
625
- # clear_button.click(fn=clear_textbox, inputs=None, outputs=chat_input)
626
-
627
- # audio_input = gr.Audio(sources=["microphone"], streaming=True, type='numpy')
628
- # audio_input.stream(transcribe_function, inputs=[state, audio_input], outputs=[state, chat_input], api_name="SAMLOne_real_time")
629
-
630
- # with gr.Column():
631
- # image_output_1 = gr.Image(value=generate_image(hardcoded_prompt_1), width=400, height=400)
632
- # image_output_2 = gr.Image(value=generate_image(hardcoded_prompt_2), width=400, height=400)
633
- # image_output_3 = gr.Image(value=generate_image(hardcoded_prompt_3), width=400, height=400)
634
-
635
- # refresh_button = gr.Button("Refresh Images")
636
- # refresh_button.click(fn=update_images, inputs=None, outputs=[image_output_1, image_output_2, image_output_3])
637
-
638
- # demo.queue()
639
- # demo.launch(share=True)
640
-
641
-
642
-
643
- import sys
644
- sys.path.append('/path/to/ChatTTS')
645
-
646
- # Import ChatTTS
647
- import ChatTTS
648
  import gradio as gr
649
  import requests
650
  import os
@@ -678,16 +31,6 @@ import librosa
678
  from pathlib import Path
679
  import torchaudio
680
 
681
- # Import ChatTTS
682
- import ChatTTS
683
- import random
684
- import numpy as np
685
-
686
-
687
- print("loading ChatTTS model...")
688
- chat = ChatTTS.Chat()
689
- chat.load_models()
690
-
691
  # Check if the token is already set in the environment variables
692
  hf_token = os.getenv("HF_TOKEN")
693
  if hf_token is None:
@@ -920,8 +263,7 @@ def bot(history, choice, tts_choice):
920
  audio_future = executor.submit(generate_audio_parler_tts, response)
921
  elif tts_choice == "MARS5":
922
  audio_future = executor.submit(generate_audio_mars5, response)
923
- elif tts_choice == "ChatTTS":
924
- audio_future = executor.submit(generate_audio_chattts, response)
925
 
926
  for character in response:
927
  history[-1][1] += character
@@ -1242,52 +584,6 @@ def generate_audio_mars5(text):
1242
  logging.debug(f"Audio saved to {combined_audio_path}")
1243
  return combined_audio_path
1244
 
1245
- # Initialize ChatTTS
1246
- chat = ChatTTS.Chat()
1247
- chat.load_models()
1248
-
1249
- # Ensure the sample rate and config_class attributes are set
1250
- if not hasattr(chat, 'sr'):
1251
- chat.sr = 22050 # Or the appropriate sample rate for your use case
1252
-
1253
- if not hasattr(chat, 'config_class'):
1254
- class Config:
1255
- def __init__(self, temperature, top_p, top_k):
1256
- self.temperature = temperature
1257
- self.top_p = top_p
1258
- self.top_k = top_k
1259
- chat.config_class = Config
1260
-
1261
- # Continue with the rest of your script
1262
- def generate_audio_chattts(text, temperature=0.3, top_p=0.7, top_k=20):
1263
- rand_spk = torch.randn(768)
1264
- params_infer_code = {
1265
- 'spk_emb': rand_spk,
1266
- 'temperature': temperature,
1267
- 'top_p': top_p,
1268
- 'top_k': top_k,
1269
- }
1270
- params_refine_text = {'prompt': '[oral_2][laugh_0][break_6]'}
1271
-
1272
- chunks = chunk_text(preprocess(text))
1273
- audio_segments = []
1274
-
1275
- for chunk in chunks:
1276
- wav = torch.zeros(1, chat.sr) # Use a placeholder silent audio for the reference
1277
- cfg = chat.config_class(**{k: params_infer_code[k] for k in params_infer_code if k in chat.config_class.__init__.__code__.co_varnames})
1278
- ar_codes, wav_out = chat.tts(chunk, wav, "", cfg=cfg)
1279
-
1280
- temp_audio_path = os.path.join(tempfile.gettempdir(), f"chattts_audio_{len(audio_segments)}.wav")
1281
- torchaudio.save(temp_audio_path, wav_out.unsqueeze(0), chat.sr)
1282
- audio_segments.append(AudioSegment.from_wav(temp_audio_path))
1283
-
1284
- combined_audio = sum(audio_segments)
1285
- combined_audio_path = os.path.join(tempfile.gettempdir(), "chattts_combined_audio.wav")
1286
- combined_audio.export(combined_audio_path, format="wav")
1287
-
1288
- logging.debug(f"Audio saved to {combined_audio_path}")
1289
- return combined_audio_path
1290
-
1291
  pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
1292
  pipe.to(device)
1293
 
@@ -1321,7 +617,7 @@ with gr.Blocks(theme='Pijush2023/scikit-learn-pijush') as demo:
1321
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
1322
  chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
1323
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
1324
- tts_choice = gr.Radio(label="Select TTS System", choices=["Eleven Labs", "Parler-TTS", "MARS5", "ChatTTS"], value="ChatTTS")
1325
  bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
1326
  bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
1327
  chatbot.like(print_like_dislike, None, None)
@@ -1358,6 +654,9 @@ demo.launch(share=True)
1358
 
1359
 
1360
 
 
 
 
1361
 
1362
 
1363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  import requests
3
  import os
 
31
  from pathlib import Path
32
  import torchaudio
33
 
 
 
 
 
 
 
 
 
 
 
34
  # Check if the token is already set in the environment variables
35
  hf_token = os.getenv("HF_TOKEN")
36
  if hf_token is None:
 
263
  audio_future = executor.submit(generate_audio_parler_tts, response)
264
  elif tts_choice == "MARS5":
265
  audio_future = executor.submit(generate_audio_mars5, response)
266
+
 
267
 
268
  for character in response:
269
  history[-1][1] += character
 
584
  logging.debug(f"Audio saved to {combined_audio_path}")
585
  return combined_audio_path
586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587
  pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", torch_dtype=torch.float16)
588
  pipe.to(device)
589
 
 
617
  gr.Markdown("<h1 style='color: red;'>Talk to RADAR</h1>", elem_id="voice-markdown")
618
  chat_input = gr.Textbox(show_copy_button=True, interactive=True, show_label=False, label="ASK Radar !!!")
619
  chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input])
620
+ tts_choice = gr.Radio(label="Select TTS System", choices=["Eleven Labs", "Parler-TTS", "MARS5"], value="Eleven Labs")
621
  bot_msg = chat_msg.then(bot, [chatbot, choice, tts_choice], [chatbot, gr.Audio(interactive=False, autoplay=True)])
622
  bot_msg.then(lambda: gr.Textbox(value="", interactive=True, placeholder="Ask Radar!!!...", show_label=False), None, [chat_input])
623
  chatbot.like(print_like_dislike, None, None)
 
654
 
655
 
656
 
657
+
658
+
659
+
660
 
661
 
662