File size: 6,107 Bytes
32d3d37
 
 
 
 
 
 
 
 
 
 
 
 
948ce80
32d3d37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision.transforms import transforms
from torch.utils.data import DataLoader, random_split, Dataset
from torchvision.datasets import ImageFolder
import matplotlib.pyplot as plt
from models import *
from scipy.ndimage import gaussian_filter1d
from torch.utils.tensorboard import SummaryWriter  # print to tensorboard
from torchvision.utils import make_grid
import pandas as pd
from handetect.configs import *
import data_loader

# torch.cuda.empty_cache()
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:1024"

writer = SummaryWriter(log_dir="output/tensorboard")


# Data loader
train_loader, valid_loader = data_loader.load_data(
    ORIG_DATA_DIR, AUG_DATA_DIR, preprocess
)


# Initialize model, criterion, optimizer, and scheduler
MODEL = MODEL.to(DEVICE)
criterion = nn.CrossEntropyLoss()
# Adam optimizer
optimizer = optim.Adam(MODEL.parameters(), lr=LEARNING_RATE)
# StepLR scheduler
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=STEP_SIZE, gamma=GAMMA)

# Lists to store training and validation loss history
TRAIN_LOSS_HIST = []
VAL_LOSS_HIST = []
AVG_TRAIN_LOSS_HIST = []
AVG_VAL_LOSS_HIST = []
TRAIN_ACC_HIST = []
VAL_ACC_HIST = []

# Training loop
for epoch in range(NUM_EPOCHS):
    MODEL.train(True)  # Set model to training mode
    running_loss = 0.0
    total_train = 0
    correct_train = 0

    for i, (inputs, labels) in enumerate(train_loader, 0):
        inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
        optimizer.zero_grad()
        outputs = MODEL(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()

        if (i + 1) % NUM_PRINT == 0:
            print(
                "[Epoch %d, Batch %d] Loss: %.6f"
                % (epoch + 1, i + 1, running_loss / NUM_PRINT)
            )
            running_loss = 0.0

        _, predicted = torch.max(outputs, 1)
        total_train += labels.size(0)
        correct_train += (predicted == labels).sum().item()

    TRAIN_ACC_HIST.append(correct_train / total_train)

    TRAIN_LOSS_HIST.append(loss.item())

    # Calculate the average training loss for the epoch
    avg_train_loss = running_loss / len(train_loader)
    writer.add_scalar("Loss/Train", avg_train_loss, epoch)
    writer.add_scalar("Accuracy/Train", correct_train / total_train, epoch)
    AVG_TRAIN_LOSS_HIST.append(avg_train_loss)

    # Print average training loss for the epoch
    print("[Epoch %d] Average Training Loss: %.6f" % (epoch + 1, avg_train_loss))

    # Learning rate scheduling
    lr_1 = optimizer.param_groups[0]["lr"]
    print("Learning Rate: {:.15f}".format(lr_1))
    scheduler.step()

    # Validation loop
    MODEL.eval()  # Set model to evaluation mode
    val_loss = 0.0
    correct_val = 0
    total_val = 0

    with torch.no_grad():
        for inputs, labels in valid_loader:
            inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
            outputs = MODEL(inputs)
            loss = criterion(outputs, labels)
            val_loss += loss.item()
            # Calculate accuracy
            _, predicted = torch.max(outputs, 1)
            total_val += labels.size(0)
            correct_val += (predicted == labels).sum().item()

    VAL_LOSS_HIST.append(loss.item())

    # Calculate the average validation loss for the epoch
    avg_val_loss = val_loss / len(valid_loader)
    AVG_VAL_LOSS_HIST.append(loss.item())
    print("Average Validation Loss: %.6f" % (avg_val_loss))

    # Calculate the accuracy of validation set
    val_accuracy = correct_val / total_val
    VAL_ACC_HIST.append(val_accuracy)
    print("Validation Accuracy: %.6f" % (val_accuracy))

    writer.add_scalar("Loss/Validation", avg_val_loss, epoch)
    writer.add_scalar("Accuracy/Validation", val_accuracy, epoch)
    # Add sample images to TensorBoard
    sample_images, _ = next(iter(valid_loader))  # Get a batch of sample images
    sample_images = sample_images.to(DEVICE)
    grid_image = make_grid(
        sample_images, nrow=8, normalize=True
    )  # Create a grid of images
    writer.add_image("Sample Images", grid_image, global_step=epoch)

# End of training loop

# Save the model

torch.save(MODEL.state_dict(), MODEL_SAVE_PATH)
print("Model saved at", MODEL_SAVE_PATH)

print("Generating loss plot...")
# train_loss_line = gaussian_filter1d(TRAIN_LOSS_HIST, sigma=10)
# val_loss_line = gaussian_filter1d(VAL_LOSS_HIST, sigma=10)
# plt.plot(range(1, NUM_EPOCHS + 1), train_loss_line, label='Train Loss')
# plt.plot(range(1, NUM_EPOCHS + 1), val_loss_line, label='Validation Loss')
avg_train_loss_line = gaussian_filter1d(AVG_TRAIN_LOSS_HIST, sigma=2)
avg_val_loss_line = gaussian_filter1d(AVG_VAL_LOSS_HIST, sigma=2)
train_loss_line = gaussian_filter1d(TRAIN_LOSS_HIST, sigma=2)
val_loss_line = gaussian_filter1d(VAL_LOSS_HIST, sigma=2)
train_acc_line = gaussian_filter1d(TRAIN_ACC_HIST, sigma=2)
val_acc_line = gaussian_filter1d(VAL_ACC_HIST, sigma=2)
plt.plot(range(1, NUM_EPOCHS + 1), train_loss_line, label="Train Loss")
plt.plot(range(1, NUM_EPOCHS + 1), val_loss_line, label="Validation Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.title("Train Loss and Validation Loss")
plt.savefig("loss_plot.png")
plt.clf()
plt.plot(range(1, NUM_EPOCHS + 1), avg_train_loss_line, label="Average Train Loss")
plt.plot(range(1, NUM_EPOCHS + 1), avg_val_loss_line, label="Average Validation Loss")
plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.legend()
plt.title("Average Train Loss and Average Validation Loss")
plt.savefig("avg_loss_plot.png")
plt.clf()
plt.plot(range(1, NUM_EPOCHS + 1), train_acc_line, label="Train Accuracy")
plt.plot(range(1, NUM_EPOCHS + 1), val_acc_line, label="Validation Accuracy")
plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.legend()
plt.title("Train Accuracy and Validation Accuracy")
plt.savefig("accuracy_plot.png")

dummy_input = torch.randn(1, 3, 64, 64).to(DEVICE)  # Adjust input shape accordingly
writer.add_graph(MODEL, dummy_input)
# Close TensorBoard writer
writer.close()