cycool29 commited on
Commit
948ce80
·
1 Parent(s): dffc421
handetect/eval.py CHANGED
@@ -5,9 +5,9 @@ from sklearn.metrics import f1_score
5
  from models import *
6
  import pathlib
7
  from PIL import Image
8
- from torchmetrics import ConfusionMatrix, Accuracy
9
  import matplotlib.pyplot as plt
10
- from configs import *
11
 
12
  image_path = "data/test/Task 1/"
13
 
@@ -23,10 +23,9 @@ print(images)
23
  true_classs = []
24
  predicted_labels = []
25
 
26
- model = mobilenet_v3_small(pretrained=False, num_classes=NUM_CLASSES)
27
- model.load_state_dict(torch.load(MODEL_SAVE_PATH, map_location=DEVICE))
28
- model.eval()
29
- model = model.to(DEVICE)
30
 
31
 
32
  # Define transformation for preprocessing
@@ -77,7 +76,7 @@ def predict_image(image_path, model, transform):
77
  print("Weighted F1 Score:", f1)
78
 
79
  # Call predict_image function
80
- predict_image(image_path, model, preprocess)
81
 
82
  # Convert the lists to tensors
83
  predicted_labels_tensor = torch.tensor(predicted_labels)
 
5
  from models import *
6
  import pathlib
7
  from PIL import Image
8
+ from torchmetrics import ConfusionMatrix
9
  import matplotlib.pyplot as plt
10
+ from handetect.configs import *
11
 
12
  image_path = "data/test/Task 1/"
13
 
 
23
  true_classs = []
24
  predicted_labels = []
25
 
26
+ MODEL.load_state_dict(torch.load(MODEL_SAVE_PATH, map_location=DEVICE))
27
+ MODEL.eval()
28
+ MODEL = MODEL.to(DEVICE)
 
29
 
30
 
31
  # Define transformation for preprocessing
 
76
  print("Weighted F1 Score:", f1)
77
 
78
  # Call predict_image function
79
+ predict_image(image_path, MODEL, preprocess)
80
 
81
  # Convert the lists to tensors
82
  predicted_labels_tensor = torch.tensor(predicted_labels)
handetect/predict.py CHANGED
@@ -6,7 +6,7 @@ from PIL import Image
6
  from handetect.models import *
7
  from torchmetrics import ConfusionMatrix
8
  import matplotlib.pyplot as plt
9
- from configs import *
10
 
11
 
12
  # Load your model (change this according to your model definition)
 
6
  from handetect.models import *
7
  from torchmetrics import ConfusionMatrix
8
  import matplotlib.pyplot as plt
9
+ from handetect.configs import *
10
 
11
 
12
  # Load your model (change this according to your model definition)
handetect/train.py CHANGED
@@ -11,7 +11,7 @@ from scipy.ndimage import gaussian_filter1d
11
  from torch.utils.tensorboard import SummaryWriter # print to tensorboard
12
  from torchvision.utils import make_grid
13
  import pandas as pd
14
- from configs import *
15
  import data_loader
16
 
17
  # torch.cuda.empty_cache()
 
11
  from torch.utils.tensorboard import SummaryWriter # print to tensorboard
12
  from torchvision.utils import make_grid
13
  import pandas as pd
14
+ from handetect.configs import *
15
  import data_loader
16
 
17
  # torch.cuda.empty_cache()
handetect/tuning.py CHANGED
@@ -9,7 +9,7 @@ from models import *
9
  from torch.utils.tensorboard import SummaryWriter #print to tensorboard
10
  from torchvision.utils import make_grid
11
  import optuna
12
- from configs import *
13
 
14
  writer = SummaryWriter()
15
 
 
9
  from torch.utils.tensorboard import SummaryWriter #print to tensorboard
10
  from torchvision.utils import make_grid
11
  import optuna
12
+ from handetect.configs import *
13
 
14
  writer = SummaryWriter()
15