Spaces:
Runtime error
Runtime error
import os, json, requests, runpod | |
import torch | |
import numpy as np | |
import rembg | |
from PIL import Image | |
from pytorch_lightning import seed_everything | |
from einops import rearrange | |
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler | |
from diffusers.utils import load_image | |
from huggingface_hub import hf_hub_download | |
from src.utils.infer_util import remove_background, resize_foreground | |
from torchvision.transforms import v2 | |
from omegaconf import OmegaConf | |
from einops import repeat | |
import tempfile | |
from tqdm import tqdm | |
import imageio | |
from src.utils.train_util import instantiate_from_config | |
from src.utils.camera_util import (FOV_to_intrinsics, get_zero123plus_input_cameras,get_circular_camera_poses,) | |
from src.utils.mesh_util import save_obj, save_obj_with_mtl | |
def preprocess(input_image, do_remove_background): | |
rembg_session = rembg.new_session() if do_remove_background else None | |
if do_remove_background: | |
input_image = remove_background(input_image, rembg_session) | |
input_image = resize_foreground(input_image, 0.85) | |
return input_image | |
def generate_mvs(input_image, sample_steps, sample_seed, pipeline, device): | |
seed_everything(sample_seed) | |
generator = torch.Generator(device=device) | |
z123_image = pipeline( | |
input_image, | |
num_inference_steps=sample_steps, | |
generator=generator, | |
).images[0] | |
show_image = np.asarray(z123_image, dtype=np.uint8) | |
show_image = torch.from_numpy(show_image) # (960, 640, 3) | |
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2) | |
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3) | |
show_image = Image.fromarray(show_image.numpy()) | |
return z123_image, show_image | |
def images_to_video(images, output_path, fps=30): | |
os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
frames = [] | |
for i in range(images.shape[0]): | |
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) | |
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ | |
f"Frame shape mismatch: {frame.shape} vs {images.shape}" | |
assert frame.min() >= 0 and frame.max() <= 255, \ | |
f"Frame value out of range: {frame.min()} ~ {frame.max()}" | |
frames.append(frame) | |
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264') | |
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): | |
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) | |
if is_flexicubes: | |
cameras = torch.linalg.inv(c2ws) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) | |
else: | |
extrinsics = c2ws.flatten(-2) | |
intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) | |
cameras = torch.cat([extrinsics, intrinsics], dim=-1) | |
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) | |
return cameras | |
def make_mesh(mesh_fpath, planes, model, infer_config, export_texmap): | |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] | |
mesh_dirname = os.path.dirname(mesh_fpath) | |
mesh_vis_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") | |
with torch.no_grad(): | |
mesh_out = model.extract_mesh(planes, use_texture_map=export_texmap, **infer_config,) | |
if export_texmap: | |
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out | |
save_obj_with_mtl( | |
vertices.data.cpu().numpy(), | |
uvs.data.cpu().numpy(), | |
faces.data.cpu().numpy(), | |
mesh_tex_idx.data.cpu().numpy(), | |
tex_map.permute(1, 2, 0).data.cpu().numpy(), | |
mesh_fpath, | |
) | |
print(f"Mesh with texmap saved to {mesh_fpath}") | |
else: | |
vertices, faces, vertex_colors = mesh_out | |
vertices = vertices[:, [1, 2, 0]] | |
vertices[:, -1] *= -1 | |
faces = faces[:, [2, 1, 0]] | |
save_obj(vertices, faces, vertex_colors, mesh_fpath) | |
print(f"Mesh saved to {mesh_fpath}") | |
return mesh_fpath | |
def make3d(images, model, device, IS_FLEXICUBES, infer_config, export_video, export_texmap): | |
images = np.asarray(images, dtype=np.float32) / 255.0 | |
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) | |
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320) | |
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device) | |
render_cameras = get_render_cameras( | |
batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device) | |
images = images.unsqueeze(0).to(device) | |
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) | |
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name | |
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] | |
mesh_dirname = os.path.dirname(mesh_fpath) | |
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") | |
with torch.no_grad(): | |
planes = model.forward_planes(images, input_cameras) | |
chunk_size = 20 if IS_FLEXICUBES else 1 | |
render_size = 384 | |
frames = [] | |
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): | |
if IS_FLEXICUBES: | |
frame = model.forward_geometry(planes, render_cameras[:, i:i+chunk_size], render_size=render_size,)['img'] | |
else: | |
frame = model.synthesizer(planes, cameras=render_cameras[:, i:i+chunk_size],render_size=render_size,)['images_rgb'] | |
frames.append(frame) | |
frames = torch.cat(frames, dim=1) | |
if export_video: | |
images_to_video(frames[0], video_fpath, fps=30,) | |
print(f"Video saved to {video_fpath}") | |
mesh_fpath = make_mesh(mesh_fpath, planes, model, infer_config, export_texmap) | |
if export_video: | |
return video_fpath, mesh_fpath | |
else: | |
return mesh_fpath | |
def generate(input): | |
values = input["input"] | |
input_image = values['input_image'] | |
sample_steps = values['sample_steps'] | |
seed = values['seed'] | |
remove_background = True | |
export_video = True | |
export_texmap = True | |
input_image = load_image(input_image) | |
processed_image = preprocess(input_image, remove_background) | |
model = None | |
torch.cuda.empty_cache() | |
pipeline = DiffusionPipeline.from_pretrained("sudo-ai/zero123plus-v1.2", custom_pipeline="zero123plus",torch_dtype=torch.float16,) | |
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing='trailing') | |
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model") | |
state_dict = torch.load(unet_ckpt_path, map_location='cpu') | |
pipeline.unet.load_state_dict(state_dict, strict=True) | |
device = torch.device('cuda') | |
pipeline = pipeline.to(device) | |
seed_everything(0) | |
mv_images, mv_show_images = generate_mvs(processed_image, sample_steps, seed, pipeline, device) | |
pipeline = None | |
torch.cuda.empty_cache() | |
config_path = 'configs/instant-mesh-base.yaml' | |
config = OmegaConf.load(config_path) | |
config_name = os.path.basename(config_path).replace('.yaml', '') | |
model_config = config.model_config | |
infer_config = config.infer_config | |
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_base.ckpt", repo_type="model") | |
model = instantiate_from_config(model_config) | |
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] | |
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k} | |
model.load_state_dict(state_dict, strict=True) | |
device = torch.device('cuda') | |
model = model.to(device) | |
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False | |
if IS_FLEXICUBES: | |
model.init_flexicubes_geometry(device, fovy=30.0) | |
model = model.eval() | |
output_video, output_model_obj = make3d(mv_images, model, device, IS_FLEXICUBES, infer_config, export_video, export_texmap) | |
mesh_basename = os.path.splitext(output_model_obj)[0] | |
result = [output_video, [output_model_obj, mesh_basename+'.mtl', mesh_basename+'.png']] | |
try: | |
notify_uri = values['notify_uri'] | |
del values['notify_uri'] | |
notify_token = values['notify_token'] | |
del values['notify_token'] | |
discord_id = values['discord_id'] | |
del values['discord_id'] | |
if(discord_id == "discord_id"): | |
discord_id = os.getenv('com_camenduru_discord_id') | |
discord_channel = values['discord_channel'] | |
del values['discord_channel'] | |
if(discord_channel == "discord_channel"): | |
discord_channel = os.getenv('com_camenduru_discord_channel') | |
discord_token = values['discord_token'] | |
del values['discord_token'] | |
if(discord_token == "discord_token"): | |
discord_token = os.getenv('com_camenduru_discord_token') | |
job_id = values['job_id'] | |
del values['job_id'] | |
# default_filename = os.path.basename(result[0]) | |
# with open(result[0], "rb") as file: | |
# files = {default_filename: file.read()} | |
# for path in result[1]: | |
# filename = os.path.basename(path) | |
# with open(path, "rb") as file: | |
# files[filename] = file.read() | |
# payload = {"content": f"{json.dumps(values)} <@{discord_id}>"} | |
# response = requests.post( | |
# f"https://discord.com/api/v9/channels/{discord_channel}/messages", | |
# data=payload, | |
# headers={"Authorization": f"Bot {discord_token}"}, | |
# files=files | |
# ) | |
# response.raise_for_status() | |
# result_urls = [attachment['url'] for attachment in response.json()['attachments']] | |
with open(result[0], 'rb') as file0: | |
response0 = requests.post("https://upload.tost.ai/api/v1", files={'file': file0}) | |
response0.raise_for_status() | |
with open(result[1][0], 'rb') as file1: | |
response1 = requests.post("https://upload.tost.ai/api/v1", files={'file': file1}) | |
response1.raise_for_status() | |
with open(result[1][1], 'rb') as file2: | |
response2 = requests.post("https://upload.tost.ai/api/v1", files={'file': file2}) | |
response2.raise_for_status() | |
with open(result[1][2], 'rb') as file3: | |
response3 = requests.post("https://upload.tost.ai/api/v1", files={'file': file3}) | |
response3.raise_for_status() | |
result_urls = [response0.text, response1.text, response2.text, response3.text] | |
notify_payload = {"jobId": job_id, "result": str(result_urls), "status": "DONE"} | |
web_notify_uri = os.getenv('com_camenduru_web_notify_uri') | |
web_notify_token = os.getenv('com_camenduru_web_notify_token') | |
if(notify_uri == "notify_uri"): | |
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
else: | |
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) | |
return {"jobId": job_id, "result": str(result_urls), "status": "DONE"} | |
except Exception as e: | |
error_payload = {"jobId": job_id, "status": "FAILED"} | |
try: | |
if(notify_uri == "notify_uri"): | |
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
else: | |
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token}) | |
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token}) | |
except: | |
pass | |
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"} | |
finally: | |
if os.path.exists(result[0]): | |
os.remove(result[0]) | |
if os.path.exists(result[1][0]): | |
os.remove(result[1][0]) | |
if os.path.exists(result[1][1]): | |
os.remove(result[1][1]) | |
if os.path.exists(result[1][2]): | |
os.remove(result[1][2]) | |
runpod.serverless.start({"handler": generate}) |