File size: 12,770 Bytes
fac4ee8
 
d15c2d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228077
d15c2d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b1e44b
d15c2d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fac4ee8
984fef6
d15c2d5
fac4ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d15c2d5
 
e983bc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fac4ee8
 
 
 
 
 
 
 
 
d15c2d5
fac4ee8
d15c2d5
fac4ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os, json, requests, runpod

import torch
import numpy as np
import rembg
from PIL import Image
from pytorch_lightning import seed_everything
from einops import rearrange
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
from src.utils.infer_util import remove_background, resize_foreground

from torchvision.transforms import v2
from omegaconf import OmegaConf
from einops import repeat
import tempfile
from tqdm import tqdm
import imageio

from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (FOV_to_intrinsics, get_zero123plus_input_cameras,get_circular_camera_poses,)
from src.utils.mesh_util import save_obj, save_obj_with_mtl

def preprocess(input_image, do_remove_background):
    rembg_session = rembg.new_session() if do_remove_background else None
    if do_remove_background:
        input_image = remove_background(input_image, rembg_session)
        input_image = resize_foreground(input_image, 0.85)
    return input_image

def generate_mvs(input_image, sample_steps, sample_seed, pipeline, device):
    seed_everything(sample_seed)
    generator = torch.Generator(device=device)
    z123_image = pipeline(
        input_image, 
        num_inference_steps=sample_steps, 
        generator=generator,
    ).images[0]
    show_image = np.asarray(z123_image, dtype=np.uint8)
    show_image = torch.from_numpy(show_image)     # (960, 640, 3)
    show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
    show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
    show_image = Image.fromarray(show_image.numpy())
    return z123_image, show_image

def images_to_video(images, output_path, fps=30):
    os.makedirs(os.path.dirname(output_path), exist_ok=True)
    frames = []
    for i in range(images.shape[0]):
        frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
        assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
            f"Frame shape mismatch: {frame.shape} vs {images.shape}"
        assert frame.min() >= 0 and frame.max() <= 255, \
            f"Frame value out of range: {frame.min()} ~ {frame.max()}"
        frames.append(frame)
    imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')

def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
    c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
    if is_flexicubes:
        cameras = torch.linalg.inv(c2ws)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
    else:
        extrinsics = c2ws.flatten(-2)
        intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
        cameras = torch.cat([extrinsics, intrinsics], dim=-1)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
    return cameras

def make_mesh(mesh_fpath, planes, model, infer_config, export_texmap):
    mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
    mesh_dirname = os.path.dirname(mesh_fpath)
    mesh_vis_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
    with torch.no_grad():
        mesh_out = model.extract_mesh(planes, use_texture_map=export_texmap, **infer_config,)
        if export_texmap:
            vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
            save_obj_with_mtl(
                vertices.data.cpu().numpy(),
                uvs.data.cpu().numpy(),
                faces.data.cpu().numpy(),
                mesh_tex_idx.data.cpu().numpy(),
                tex_map.permute(1, 2, 0).data.cpu().numpy(),
                mesh_fpath,
            )
            print(f"Mesh with texmap saved to {mesh_fpath}")
        else:
            vertices, faces, vertex_colors = mesh_out
            vertices = vertices[:, [1, 2, 0]]
            vertices[:, -1] *= -1
            faces = faces[:, [2, 1, 0]]
            save_obj(vertices, faces, vertex_colors, mesh_fpath)
            print(f"Mesh saved to {mesh_fpath}")
    return mesh_fpath

def make3d(images, model, device, IS_FLEXICUBES, infer_config, export_video, export_texmap):
    images = np.asarray(images, dtype=np.float32) / 255.0
    images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()     # (3, 960, 640)
    images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)        # (6, 3, 320, 320)
    input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
    render_cameras = get_render_cameras(
        batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device)
    images = images.unsqueeze(0).to(device)
    images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
    mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
    mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
    mesh_dirname = os.path.dirname(mesh_fpath)
    video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
    with torch.no_grad():
        planes = model.forward_planes(images, input_cameras)
        chunk_size = 20 if IS_FLEXICUBES else 1
        render_size = 384
        frames = []
        for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
            if IS_FLEXICUBES:
                frame = model.forward_geometry(planes, render_cameras[:, i:i+chunk_size], render_size=render_size,)['img']
            else:
                frame = model.synthesizer(planes, cameras=render_cameras[:, i:i+chunk_size],render_size=render_size,)['images_rgb']
            frames.append(frame)
        frames = torch.cat(frames, dim=1)
        if export_video:
            images_to_video(frames[0], video_fpath, fps=30,)
            print(f"Video saved to {video_fpath}")
    mesh_fpath = make_mesh(mesh_fpath, planes, model, infer_config, export_texmap)
    if export_video:
        return video_fpath, mesh_fpath
    else:
        return mesh_fpath

@torch.inference_mode()
def generate(input):
    values = input["input"]
    input_image = values['input_image']
    sample_steps = values['sample_steps']
    seed = values['seed']
    remove_background = True
    export_video = True
    export_texmap = True

    input_image = load_image(input_image)
    processed_image = preprocess(input_image, remove_background)

    model = None
    torch.cuda.empty_cache()
    pipeline = DiffusionPipeline.from_pretrained("sudo-ai/zero123plus-v1.2", custom_pipeline="zero123plus",torch_dtype=torch.float16,)
    pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing='trailing')
    unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
    state_dict = torch.load(unet_ckpt_path, map_location='cpu')
    pipeline.unet.load_state_dict(state_dict, strict=True)
    device = torch.device('cuda')
    pipeline = pipeline.to(device)
    seed_everything(0)
    mv_images, mv_show_images = generate_mvs(processed_image, sample_steps, seed, pipeline, device)

    pipeline = None
    torch.cuda.empty_cache()
    config_path = 'configs/instant-mesh-base.yaml'
    config = OmegaConf.load(config_path)
    config_name = os.path.basename(config_path).replace('.yaml', '')
    model_config = config.model_config
    infer_config = config.infer_config
    model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_base.ckpt", repo_type="model")
    model = instantiate_from_config(model_config)
    state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
    state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
    model.load_state_dict(state_dict, strict=True)
    device = torch.device('cuda')
    model = model.to(device)
    IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
    if IS_FLEXICUBES:
        model.init_flexicubes_geometry(device, fovy=30.0)
    model = model.eval()

    output_video, output_model_obj = make3d(mv_images, model, device, IS_FLEXICUBES, infer_config, export_video, export_texmap)
    mesh_basename = os.path.splitext(output_model_obj)[0]
    
    result = [output_video, [output_model_obj, mesh_basename+'.mtl', mesh_basename+'.png']]
    try:
        notify_uri = values['notify_uri']
        del values['notify_uri']
        notify_token = values['notify_token']
        del values['notify_token']
        discord_id = values['discord_id']
        del values['discord_id']
        if(discord_id == "discord_id"):
            discord_id = os.getenv('com_camenduru_discord_id')
        discord_channel = values['discord_channel']
        del values['discord_channel']
        if(discord_channel == "discord_channel"):
            discord_channel = os.getenv('com_camenduru_discord_channel')
        discord_token = values['discord_token']
        del values['discord_token']
        if(discord_token == "discord_token"):
            discord_token = os.getenv('com_camenduru_discord_token')
        job_id = values['job_id']
        del values['job_id']
        # default_filename = os.path.basename(result[0])
        # with open(result[0], "rb") as file:
        #     files = {default_filename: file.read()}
        # for path in result[1]:
        #     filename = os.path.basename(path)
        #     with open(path, "rb") as file:
        #         files[filename] = file.read()
        # payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
        # response = requests.post(
        #     f"https://discord.com/api/v9/channels/{discord_channel}/messages",
        #     data=payload,
        #     headers={"Authorization": f"Bot {discord_token}"},
        #     files=files
        # )
        # response.raise_for_status()
        # result_urls = [attachment['url'] for attachment in response.json()['attachments']]
        with open(result[0], 'rb') as file0:
            response0 = requests.post("https://upload.tost.ai/api/v1", files={'file': file0})
        response0.raise_for_status()
        with open(result[1][0], 'rb') as file1:
            response1 = requests.post("https://upload.tost.ai/api/v1", files={'file': file1})
        response1.raise_for_status()
        with open(result[1][1], 'rb') as file2:
            response2 = requests.post("https://upload.tost.ai/api/v1", files={'file': file2})
        response2.raise_for_status()
        with open(result[1][2], 'rb') as file3:
            response3 = requests.post("https://upload.tost.ai/api/v1", files={'file': file3})
        response3.raise_for_status()
        result_urls = [response0.text, response1.text, response2.text, response3.text]
        notify_payload = {"jobId": job_id, "result": str(result_urls), "status": "DONE"}
        web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
        web_notify_token = os.getenv('com_camenduru_web_notify_token')
        if(notify_uri == "notify_uri"):
            requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
        else:
            requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
            requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
        return {"jobId": job_id, "result": str(result_urls), "status": "DONE"}
    except Exception as e:
        error_payload = {"jobId": job_id, "status": "FAILED"}
        try:
            if(notify_uri == "notify_uri"):
                requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
            else:
                requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
                requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
        except:
            pass
        return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
    finally:
        if os.path.exists(result[0]):
            os.remove(result[0])
        if os.path.exists(result[1][0]):
            os.remove(result[1][0])
        if os.path.exists(result[1][1]):
            os.remove(result[1][1])
        if os.path.exists(result[1][2]):
            os.remove(result[1][2])

runpod.serverless.start({"handler": generate})