Spaces:
Runtime error
Runtime error
File size: 12,770 Bytes
fac4ee8 d15c2d5 1228077 d15c2d5 0b1e44b d15c2d5 fac4ee8 984fef6 d15c2d5 fac4ee8 d15c2d5 e983bc5 fac4ee8 d15c2d5 fac4ee8 d15c2d5 fac4ee8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os, json, requests, runpod
import torch
import numpy as np
import rembg
from PIL import Image
from pytorch_lightning import seed_everything
from einops import rearrange
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
from src.utils.infer_util import remove_background, resize_foreground
from torchvision.transforms import v2
from omegaconf import OmegaConf
from einops import repeat
import tempfile
from tqdm import tqdm
import imageio
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (FOV_to_intrinsics, get_zero123plus_input_cameras,get_circular_camera_poses,)
from src.utils.mesh_util import save_obj, save_obj_with_mtl
def preprocess(input_image, do_remove_background):
rembg_session = rembg.new_session() if do_remove_background else None
if do_remove_background:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
return input_image
def generate_mvs(input_image, sample_steps, sample_seed, pipeline, device):
seed_everything(sample_seed)
generator = torch.Generator(device=device)
z123_image = pipeline(
input_image,
num_inference_steps=sample_steps,
generator=generator,
).images[0]
show_image = np.asarray(z123_image, dtype=np.uint8)
show_image = torch.from_numpy(show_image) # (960, 640, 3)
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
show_image = Image.fromarray(show_image.numpy())
return z123_image, show_image
def images_to_video(images, output_path, fps=30):
os.makedirs(os.path.dirname(output_path), exist_ok=True)
frames = []
for i in range(images.shape[0]):
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
f"Frame shape mismatch: {frame.shape} vs {images.shape}"
assert frame.min() >= 0 and frame.max() <= 255, \
f"Frame value out of range: {frame.min()} ~ {frame.max()}"
frames.append(frame)
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
if is_flexicubes:
cameras = torch.linalg.inv(c2ws)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
else:
extrinsics = c2ws.flatten(-2)
intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
return cameras
def make_mesh(mesh_fpath, planes, model, infer_config, export_texmap):
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
mesh_vis_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
with torch.no_grad():
mesh_out = model.extract_mesh(planes, use_texture_map=export_texmap, **infer_config,)
if export_texmap:
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
save_obj_with_mtl(
vertices.data.cpu().numpy(),
uvs.data.cpu().numpy(),
faces.data.cpu().numpy(),
mesh_tex_idx.data.cpu().numpy(),
tex_map.permute(1, 2, 0).data.cpu().numpy(),
mesh_fpath,
)
print(f"Mesh with texmap saved to {mesh_fpath}")
else:
vertices, faces, vertex_colors = mesh_out
vertices = vertices[:, [1, 2, 0]]
vertices[:, -1] *= -1
faces = faces[:, [2, 1, 0]]
save_obj(vertices, faces, vertex_colors, mesh_fpath)
print(f"Mesh saved to {mesh_fpath}")
return mesh_fpath
def make3d(images, model, device, IS_FLEXICUBES, infer_config, export_video, export_texmap):
images = np.asarray(images, dtype=np.float32) / 255.0
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
render_cameras = get_render_cameras(
batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device)
images = images.unsqueeze(0).to(device)
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
with torch.no_grad():
planes = model.forward_planes(images, input_cameras)
chunk_size = 20 if IS_FLEXICUBES else 1
render_size = 384
frames = []
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
if IS_FLEXICUBES:
frame = model.forward_geometry(planes, render_cameras[:, i:i+chunk_size], render_size=render_size,)['img']
else:
frame = model.synthesizer(planes, cameras=render_cameras[:, i:i+chunk_size],render_size=render_size,)['images_rgb']
frames.append(frame)
frames = torch.cat(frames, dim=1)
if export_video:
images_to_video(frames[0], video_fpath, fps=30,)
print(f"Video saved to {video_fpath}")
mesh_fpath = make_mesh(mesh_fpath, planes, model, infer_config, export_texmap)
if export_video:
return video_fpath, mesh_fpath
else:
return mesh_fpath
@torch.inference_mode()
def generate(input):
values = input["input"]
input_image = values['input_image']
sample_steps = values['sample_steps']
seed = values['seed']
remove_background = True
export_video = True
export_texmap = True
input_image = load_image(input_image)
processed_image = preprocess(input_image, remove_background)
model = None
torch.cuda.empty_cache()
pipeline = DiffusionPipeline.from_pretrained("sudo-ai/zero123plus-v1.2", custom_pipeline="zero123plus",torch_dtype=torch.float16,)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing='trailing')
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)
device = torch.device('cuda')
pipeline = pipeline.to(device)
seed_everything(0)
mv_images, mv_show_images = generate_mvs(processed_image, sample_steps, seed, pipeline, device)
pipeline = None
torch.cuda.empty_cache()
config_path = 'configs/instant-mesh-base.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_base.ckpt", repo_type="model")
model = instantiate_from_config(model_config)
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
model.load_state_dict(state_dict, strict=True)
device = torch.device('cuda')
model = model.to(device)
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
if IS_FLEXICUBES:
model.init_flexicubes_geometry(device, fovy=30.0)
model = model.eval()
output_video, output_model_obj = make3d(mv_images, model, device, IS_FLEXICUBES, infer_config, export_video, export_texmap)
mesh_basename = os.path.splitext(output_model_obj)[0]
result = [output_video, [output_model_obj, mesh_basename+'.mtl', mesh_basename+'.png']]
try:
notify_uri = values['notify_uri']
del values['notify_uri']
notify_token = values['notify_token']
del values['notify_token']
discord_id = values['discord_id']
del values['discord_id']
if(discord_id == "discord_id"):
discord_id = os.getenv('com_camenduru_discord_id')
discord_channel = values['discord_channel']
del values['discord_channel']
if(discord_channel == "discord_channel"):
discord_channel = os.getenv('com_camenduru_discord_channel')
discord_token = values['discord_token']
del values['discord_token']
if(discord_token == "discord_token"):
discord_token = os.getenv('com_camenduru_discord_token')
job_id = values['job_id']
del values['job_id']
# default_filename = os.path.basename(result[0])
# with open(result[0], "rb") as file:
# files = {default_filename: file.read()}
# for path in result[1]:
# filename = os.path.basename(path)
# with open(path, "rb") as file:
# files[filename] = file.read()
# payload = {"content": f"{json.dumps(values)} <@{discord_id}>"}
# response = requests.post(
# f"https://discord.com/api/v9/channels/{discord_channel}/messages",
# data=payload,
# headers={"Authorization": f"Bot {discord_token}"},
# files=files
# )
# response.raise_for_status()
# result_urls = [attachment['url'] for attachment in response.json()['attachments']]
with open(result[0], 'rb') as file0:
response0 = requests.post("https://upload.tost.ai/api/v1", files={'file': file0})
response0.raise_for_status()
with open(result[1][0], 'rb') as file1:
response1 = requests.post("https://upload.tost.ai/api/v1", files={'file': file1})
response1.raise_for_status()
with open(result[1][1], 'rb') as file2:
response2 = requests.post("https://upload.tost.ai/api/v1", files={'file': file2})
response2.raise_for_status()
with open(result[1][2], 'rb') as file3:
response3 = requests.post("https://upload.tost.ai/api/v1", files={'file': file3})
response3.raise_for_status()
result_urls = [response0.text, response1.text, response2.text, response3.text]
notify_payload = {"jobId": job_id, "result": str(result_urls), "status": "DONE"}
web_notify_uri = os.getenv('com_camenduru_web_notify_uri')
web_notify_token = os.getenv('com_camenduru_web_notify_token')
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(notify_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
return {"jobId": job_id, "result": str(result_urls), "status": "DONE"}
except Exception as e:
error_payload = {"jobId": job_id, "status": "FAILED"}
try:
if(notify_uri == "notify_uri"):
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
else:
requests.post(web_notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": web_notify_token})
requests.post(notify_uri, data=json.dumps(error_payload), headers={'Content-Type': 'application/json', "Authorization": notify_token})
except:
pass
return {"jobId": job_id, "result": f"FAILED: {str(e)}", "status": "FAILED"}
finally:
if os.path.exists(result[0]):
os.remove(result[0])
if os.path.exists(result[1][0]):
os.remove(result[1][0])
if os.path.exists(result[1][1]):
os.remove(result[1][1])
if os.path.exists(result[1][2]):
os.remove(result[1][2])
runpod.serverless.start({"handler": generate}) |