Spaces:
Runtime error
Runtime error
Create worker_runpod.py
Browse files- worker_runpod.py +225 -0
worker_runpod.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import rembg
|
4 |
+
from PIL import Image
|
5 |
+
from pytorch_lightning import seed_everything
|
6 |
+
from einops import rearrange
|
7 |
+
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
8 |
+
from diffusers.utils import load_image
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
from src.utils.infer_util import remove_background, resize_foreground
|
11 |
+
|
12 |
+
import os, json
|
13 |
+
from torchvision.transforms import v2
|
14 |
+
from omegaconf import OmegaConf
|
15 |
+
from einops import repeat
|
16 |
+
import tempfile
|
17 |
+
from tqdm import tqdm
|
18 |
+
import imageio
|
19 |
+
|
20 |
+
from src.utils.train_util import instantiate_from_config
|
21 |
+
from src.utils.camera_util import (FOV_to_intrinsics, get_zero123plus_input_cameras,get_circular_camera_poses,)
|
22 |
+
from src.utils.mesh_util import save_obj, save_obj_with_mtl
|
23 |
+
|
24 |
+
import runpod
|
25 |
+
|
26 |
+
def preprocess(input_image, do_remove_background):
|
27 |
+
rembg_session = rembg.new_session() if do_remove_background else None
|
28 |
+
if do_remove_background:
|
29 |
+
input_image = remove_background(input_image, rembg_session)
|
30 |
+
input_image = resize_foreground(input_image, 0.85)
|
31 |
+
return input_image
|
32 |
+
|
33 |
+
def generate_mvs(input_image, sample_steps, sample_seed, pipeline, device):
|
34 |
+
seed_everything(sample_seed)
|
35 |
+
generator = torch.Generator(device=device)
|
36 |
+
z123_image = pipeline(
|
37 |
+
input_image,
|
38 |
+
num_inference_steps=sample_steps,
|
39 |
+
generator=generator,
|
40 |
+
).images[0]
|
41 |
+
show_image = np.asarray(z123_image, dtype=np.uint8)
|
42 |
+
show_image = torch.from_numpy(show_image) # (960, 640, 3)
|
43 |
+
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
|
44 |
+
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
|
45 |
+
show_image = Image.fromarray(show_image.numpy())
|
46 |
+
return z123_image, show_image
|
47 |
+
|
48 |
+
def images_to_video(images, output_path, fps=30):
|
49 |
+
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
50 |
+
frames = []
|
51 |
+
for i in range(images.shape[0]):
|
52 |
+
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
|
53 |
+
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
|
54 |
+
f"Frame shape mismatch: {frame.shape} vs {images.shape}"
|
55 |
+
assert frame.min() >= 0 and frame.max() <= 255, \
|
56 |
+
f"Frame value out of range: {frame.min()} ~ {frame.max()}"
|
57 |
+
frames.append(frame)
|
58 |
+
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')
|
59 |
+
|
60 |
+
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
|
61 |
+
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
|
62 |
+
if is_flexicubes:
|
63 |
+
cameras = torch.linalg.inv(c2ws)
|
64 |
+
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
65 |
+
else:
|
66 |
+
extrinsics = c2ws.flatten(-2)
|
67 |
+
intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
|
68 |
+
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
|
69 |
+
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
|
70 |
+
return cameras
|
71 |
+
|
72 |
+
def make_mesh(mesh_fpath, planes, model, infer_config, export_texmap):
|
73 |
+
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
74 |
+
mesh_dirname = os.path.dirname(mesh_fpath)
|
75 |
+
mesh_vis_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
|
76 |
+
with torch.no_grad():
|
77 |
+
mesh_out = model.extract_mesh(planes, use_texture_map=export_texmap, **infer_config,)
|
78 |
+
if export_texmap:
|
79 |
+
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
|
80 |
+
save_obj_with_mtl(
|
81 |
+
vertices.data.cpu().numpy(),
|
82 |
+
uvs.data.cpu().numpy(),
|
83 |
+
faces.data.cpu().numpy(),
|
84 |
+
mesh_tex_idx.data.cpu().numpy(),
|
85 |
+
tex_map.permute(1, 2, 0).data.cpu().numpy(),
|
86 |
+
mesh_fpath,
|
87 |
+
)
|
88 |
+
print(f"Mesh with texmap saved to {mesh_fpath}")
|
89 |
+
else:
|
90 |
+
vertices, faces, vertex_colors = mesh_out
|
91 |
+
vertices = vertices[:, [1, 2, 0]]
|
92 |
+
vertices[:, -1] *= -1
|
93 |
+
faces = faces[:, [2, 1, 0]]
|
94 |
+
save_obj(vertices, faces, vertex_colors, mesh_fpath)
|
95 |
+
print(f"Mesh saved to {mesh_fpath}")
|
96 |
+
return mesh_fpath
|
97 |
+
|
98 |
+
def make3d(images, model, device, IS_FLEXICUBES, infer_config, export_video, export_texmap):
|
99 |
+
images = np.asarray(images, dtype=np.float32) / 255.0
|
100 |
+
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
|
101 |
+
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
|
102 |
+
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
|
103 |
+
render_cameras = get_render_cameras(
|
104 |
+
batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device)
|
105 |
+
images = images.unsqueeze(0).to(device)
|
106 |
+
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
|
107 |
+
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
|
108 |
+
print(mesh_fpath)
|
109 |
+
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
|
110 |
+
mesh_dirname = os.path.dirname(mesh_fpath)
|
111 |
+
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
|
112 |
+
with torch.no_grad():
|
113 |
+
planes = model.forward_planes(images, input_cameras)
|
114 |
+
chunk_size = 20 if IS_FLEXICUBES else 1
|
115 |
+
render_size = 384
|
116 |
+
frames = []
|
117 |
+
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
|
118 |
+
if IS_FLEXICUBES:
|
119 |
+
frame = model.forward_geometry(planes, render_cameras[:, i:i+chunk_size], render_size=render_size,)['img']
|
120 |
+
else:
|
121 |
+
frame = model.synthesizer(planes, cameras=render_cameras[:, i:i+chunk_size],render_size=render_size,)['images_rgb']
|
122 |
+
frames.append(frame)
|
123 |
+
frames = torch.cat(frames, dim=1)
|
124 |
+
if export_video:
|
125 |
+
images_to_video(frames[0], video_fpath, fps=30,)
|
126 |
+
print(f"Video saved to {video_fpath}")
|
127 |
+
mesh_fpath = make_mesh(mesh_fpath, planes, model, infer_config, export_texmap)
|
128 |
+
if export_video:
|
129 |
+
return video_fpath, mesh_fpath
|
130 |
+
else:
|
131 |
+
return mesh_fpath
|
132 |
+
|
133 |
+
@torch.inference_mode()
|
134 |
+
def generate(input):
|
135 |
+
values = json.loads(command)
|
136 |
+
input_image = values['input_image']
|
137 |
+
sample_steps = values['sample_steps']
|
138 |
+
seed = values['seed']
|
139 |
+
remove_background = True
|
140 |
+
export_video = True
|
141 |
+
export_texmap = True
|
142 |
+
|
143 |
+
input_image = load_image(input_image)
|
144 |
+
processed_image = preprocess(input_image, remove_background)
|
145 |
+
|
146 |
+
model = None
|
147 |
+
torch.cuda.empty_cache()
|
148 |
+
pipeline = DiffusionPipeline.from_pretrained("sudo-ai/zero123plus-v1.2", custom_pipeline="zero123plus",torch_dtype=torch.float16,)
|
149 |
+
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing='trailing')
|
150 |
+
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
|
151 |
+
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
|
152 |
+
pipeline.unet.load_state_dict(state_dict, strict=True)
|
153 |
+
device = torch.device('cuda:0')
|
154 |
+
pipeline = pipeline.to(device)
|
155 |
+
seed_everything(0)
|
156 |
+
mv_images, mv_show_images = generate_mvs(processed_image, sample_steps, seed, pipeline, device)
|
157 |
+
|
158 |
+
pipeline = None
|
159 |
+
torch.cuda.empty_cache()
|
160 |
+
config_path = 'configs/instant-mesh-base.yaml'
|
161 |
+
config = OmegaConf.load(config_path)
|
162 |
+
config_name = os.path.basename(config_path).replace('.yaml', '')
|
163 |
+
model_config = config.model_config
|
164 |
+
infer_config = config.infer_config
|
165 |
+
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_base.ckpt", repo_type="model")
|
166 |
+
model = instantiate_from_config(model_config)
|
167 |
+
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
168 |
+
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
|
169 |
+
model.load_state_dict(state_dict, strict=True)
|
170 |
+
device = torch.device('cuda')
|
171 |
+
model = model.to(device)
|
172 |
+
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
|
173 |
+
if IS_FLEXICUBES:
|
174 |
+
model.init_flexicubes_geometry(device, fovy=30.0)
|
175 |
+
model = model.eval()
|
176 |
+
|
177 |
+
output_video, output_model_obj = make3d(mv_images, model, device, IS_FLEXICUBES, infer_config, export_video, export_texmap)
|
178 |
+
mesh_basename = os.path.splitext(output_model_obj)[0]
|
179 |
+
result = output_video, [output_model_obj, mesh_basename+'.mtl', mesh_basename+'.png']
|
180 |
+
|
181 |
+
response = None
|
182 |
+
try:
|
183 |
+
source_id = values['source_id']
|
184 |
+
del values['source_id']
|
185 |
+
source_channel = values['source_channel']
|
186 |
+
del values['source_channel']
|
187 |
+
job_id = values['job_id']
|
188 |
+
del values['job_id']
|
189 |
+
|
190 |
+
first_key = next(iter(result[0]))
|
191 |
+
file_path = result[0][first_key]
|
192 |
+
file_paths = result[1]
|
193 |
+
default_filename = os.path.basename(file_path)
|
194 |
+
files = { default_filename: open(file_path, "rb").read() }
|
195 |
+
for path in file_paths:
|
196 |
+
filename = os.path.basename(path)
|
197 |
+
with open(path, "rb") as file:
|
198 |
+
files[filename] = file.read()
|
199 |
+
|
200 |
+
payload = {"content": f"{json.dumps(values)} <@{source_id}>"}
|
201 |
+
response = requests.post(
|
202 |
+
f"https://discord.com/api/v9/channels/{source_channel}/messages",
|
203 |
+
data=payload,
|
204 |
+
headers={"authorization": f"Bot {discord_token}"},
|
205 |
+
files=files
|
206 |
+
)
|
207 |
+
response.raise_for_status()
|
208 |
+
except Exception as e:
|
209 |
+
print(f"An unexpected error occurred: {e}")
|
210 |
+
finally:
|
211 |
+
if os.path.exists(result):
|
212 |
+
os.remove(result)
|
213 |
+
|
214 |
+
if response and response.status_code == 200:
|
215 |
+
try:
|
216 |
+
payload = {"jobId": job_id, "result": response.json()['attachments'][0]['url']}
|
217 |
+
requests.post(f"{web_uri}/api/notify", data=json.dumps(payload), headers={'Content-Type': 'application/json', "authorization": f"{web_token}"})
|
218 |
+
except Exception as e:
|
219 |
+
print(f"An unexpected error occurred: {e}")
|
220 |
+
finally:
|
221 |
+
return {"result": response.json()['attachments'][0]['url']}
|
222 |
+
else:
|
223 |
+
return {"result": "ERROR"}
|
224 |
+
|
225 |
+
runpod.serverless.start({"handler": generate})
|