Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -22,18 +22,21 @@ def quantize_model(model):
|
|
22 |
)
|
23 |
return quantized_model
|
24 |
|
25 |
-
model
|
26 |
vocoder = quantize_model(vocoder)
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
|
|
|
|
|
31 |
|
32 |
# Use inference mode for faster computation
|
33 |
@torch.inference_mode()
|
34 |
def text_to_speech(text):
|
35 |
-
inputs = processor(text=text, return_tensors="pt")
|
36 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
|
|
37 |
output_path = "output.wav"
|
38 |
sf.write(output_path, speech.numpy(), samplerate=16000)
|
39 |
return output_path
|
|
|
22 |
)
|
23 |
return quantized_model
|
24 |
|
25 |
+
# Only quantize the vocoder, as the main model might not be compatible
|
26 |
vocoder = quantize_model(vocoder)
|
27 |
|
28 |
+
# Move models to GPU if available
|
29 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
+
model = model.to(device)
|
31 |
+
vocoder = vocoder.to(device)
|
32 |
+
speaker_embeddings = speaker_embeddings.to(device)
|
33 |
|
34 |
# Use inference mode for faster computation
|
35 |
@torch.inference_mode()
|
36 |
def text_to_speech(text):
|
37 |
+
inputs = processor(text=text, return_tensors="pt").to(device)
|
38 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
39 |
+
speech = speech.cpu() # Move back to CPU for saving
|
40 |
output_path = "output.wav"
|
41 |
sf.write(output_path, speech.numpy(), samplerate=16000)
|
42 |
return output_path
|