Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,13 +15,27 @@ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
|
15 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
16 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def text_to_speech(text):
|
19 |
inputs = processor(text=text, return_tensors="pt")
|
20 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
21 |
-
|
22 |
output_path = "output.wav"
|
23 |
sf.write(output_path, speech.numpy(), samplerate=16000)
|
24 |
-
|
25 |
return output_path
|
26 |
|
27 |
# Create Gradio interface
|
@@ -30,7 +44,7 @@ iface = gr.Interface(
|
|
30 |
inputs=gr.Textbox(label="Enter text to convert to speech"),
|
31 |
outputs=gr.Audio(label="Generated Speech"),
|
32 |
title="Text-to-Speech Converter",
|
33 |
-
description="Convert text to speech using the SpeechT5 model."
|
34 |
)
|
35 |
|
36 |
# Launch the app
|
|
|
15 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
16 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
17 |
|
18 |
+
# Quantize the models
|
19 |
+
def quantize_model(model):
|
20 |
+
quantized_model = torch.quantization.quantize_dynamic(
|
21 |
+
model, {torch.nn.Linear}, dtype=torch.qint8
|
22 |
+
)
|
23 |
+
return quantized_model
|
24 |
+
|
25 |
+
model = quantize_model(model)
|
26 |
+
vocoder = quantize_model(vocoder)
|
27 |
+
|
28 |
+
# JIT compile the models for faster inference
|
29 |
+
model = torch.jit.script(model)
|
30 |
+
vocoder = torch.jit.script(vocoder)
|
31 |
+
|
32 |
+
# Use inference mode for faster computation
|
33 |
+
@torch.inference_mode()
|
34 |
def text_to_speech(text):
|
35 |
inputs = processor(text=text, return_tensors="pt")
|
36 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
|
|
37 |
output_path = "output.wav"
|
38 |
sf.write(output_path, speech.numpy(), samplerate=16000)
|
|
|
39 |
return output_path
|
40 |
|
41 |
# Create Gradio interface
|
|
|
44 |
inputs=gr.Textbox(label="Enter text to convert to speech"),
|
45 |
outputs=gr.Audio(label="Generated Speech"),
|
46 |
title="Text-to-Speech Converter",
|
47 |
+
description="Convert text to speech using the optimized SpeechT5 model."
|
48 |
)
|
49 |
|
50 |
# Launch the app
|