File size: 3,884 Bytes
7e364b6
 
48010b4
7e364b6
 
 
7339e68
0dcfd6e
7e364b6
 
 
 
 
 
1788a8d
7e364b6
1788a8d
 
 
 
 
 
 
 
 
cf2d248
8d71f5d
 
 
 
 
 
 
 
 
cf2d248
d051bce
 
 
7e364b6
d051bce
 
7e364b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d60eba5
7e364b6
 
 
 
 
 
d60eba5
 
 
7e364b6
 
 
 
 
 
 
 
 
 
d051bce
cf2d248
8d71f5d
cf2d248
 
 
d051bce
 
 
f4c2b4e
 
e4a6244
d051bce
 
0c3d325
 
6580a7b
 
 
 
 
 
97ac7bb
6580a7b
 
 
 
 
f4c2b4e
7e364b6
 
cf2d248
8d71f5d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import chromadb
from chromadb.utils import embedding_functions
from chromadb.config import Settings
from transformers import pipeline
import streamlit as st
import fitz  # PyMuPDF for PDF parsing
from PIL import Image

# Configure ChromaDB with persistent SQLite database
config = Settings(
    persist_directory="./chromadb_data",
    chroma_db_impl="sqlite",
)

# Initialize persistent client with SQLite
def setup_chromadb():
    client = chromadb.PersistentClient(path="./chromadb_data")
    collection = client.get_or_create_collection(
        name="pdf_data",
        embedding_function=chromadb.utils.embedding_functions.SentenceTransformerEmbeddingFunction(
            model_name="sentence-transformers/all-MiniLM-L6-v2"
        ),
    )
    return client, collection

# Clear the collection
def clear_collection(client, collection_name):
    # Delete the collection and recreate it
    client.delete_collection(name=collection_name)
    return client.get_or_create_collection(
        name=collection_name,
        embedding_function=chromadb.utils.embedding_functions.SentenceTransformerEmbeddingFunction(
            model_name="sentence-transformers/all-MiniLM-L6-v2"
        ),
    )

def extract_text_from_pdf(uploaded_file):
    with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
        text = ""
        for page in doc:
            text += page.get_text()
        return text

def add_pdf_text_to_db(collection, pdf_text):
    sentences = pdf_text.split("\n")  # Split text into lines for granularity
    for idx, sentence in enumerate(sentences):
        if sentence.strip():  # Avoid empty lines
            collection.add(
                ids=[f"pdf_text_{idx}"],
                documents=[sentence],
                metadatas={"line_number": idx, "text": sentence}
            )

def query_pdf_data(collection, query, retriever_model):
    results = collection.query(
        query_texts=[query],
        n_results=3
    )
    
    context = " ".join([doc for doc in results["documents"][0]])
    answer = retriever_model(f"Context: {context}\nQuestion: {query}")
    return answer, results["metadatas"]

# Streamlit Interface
def main():
    image = Image.open('LOGO.PNG')
    st.image(
    image, width=250)
    st.title("PDF Chatbot with Retrieval-Augmented Generation")
    st.write("Upload a PDF, and ask questions about its content!")

    # Initialize components
    client, collection = setup_chromadb()
    retriever_model = pipeline("text2text-generation", model="google/flan-t5-small")  # Free LLM

    # File upload
    uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
    if uploaded_file:
        try:
            # Clear existing data
            collection = clear_collection(client, "pdf_data")
            st.info("Existing data cleared from the database.")

            # Extract and add new data
            pdf_text = extract_text_from_pdf(uploaded_file)
            st.success("Text extracted successfully!")
            st.text_area("Extracted Text:", pdf_text, height=300)
            add_pdf_text_to_db(collection, pdf_text)
            st.success("PDF text has been added to the database. You can now query it!")
            
        except Exception as e:
            st.error(f"Error extracting text: {e}")
            
        query = st.text_input("Enter your query about the PDF:")
        if query:
            try:
                answer, metadata = query_pdf_data(collection, query, retriever_model)
                st.subheader("Answer:")
                st.write(answer[0]['generated_text'])
                st.subheader("Retrieved Context:")
                st.write(answer)
                for meta in metadata[0]:
                    st.write(meta)
            except Exception as e:
                st.error(f"An error occurred: {str(e)}")


if __name__ == "__main__":
    main()