Spaces:
Sleeping
Sleeping
File size: 3,884 Bytes
7e364b6 48010b4 7e364b6 7339e68 0dcfd6e 7e364b6 1788a8d 7e364b6 1788a8d cf2d248 8d71f5d cf2d248 d051bce 7e364b6 d051bce 7e364b6 d60eba5 7e364b6 d60eba5 7e364b6 d051bce cf2d248 8d71f5d cf2d248 d051bce f4c2b4e e4a6244 d051bce 0c3d325 6580a7b 97ac7bb 6580a7b f4c2b4e 7e364b6 cf2d248 8d71f5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import chromadb
from chromadb.utils import embedding_functions
from chromadb.config import Settings
from transformers import pipeline
import streamlit as st
import fitz # PyMuPDF for PDF parsing
from PIL import Image
# Configure ChromaDB with persistent SQLite database
config = Settings(
persist_directory="./chromadb_data",
chroma_db_impl="sqlite",
)
# Initialize persistent client with SQLite
def setup_chromadb():
client = chromadb.PersistentClient(path="./chromadb_data")
collection = client.get_or_create_collection(
name="pdf_data",
embedding_function=chromadb.utils.embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="sentence-transformers/all-MiniLM-L6-v2"
),
)
return client, collection
# Clear the collection
def clear_collection(client, collection_name):
# Delete the collection and recreate it
client.delete_collection(name=collection_name)
return client.get_or_create_collection(
name=collection_name,
embedding_function=chromadb.utils.embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="sentence-transformers/all-MiniLM-L6-v2"
),
)
def extract_text_from_pdf(uploaded_file):
with fitz.open(stream=uploaded_file.read(), filetype="pdf") as doc:
text = ""
for page in doc:
text += page.get_text()
return text
def add_pdf_text_to_db(collection, pdf_text):
sentences = pdf_text.split("\n") # Split text into lines for granularity
for idx, sentence in enumerate(sentences):
if sentence.strip(): # Avoid empty lines
collection.add(
ids=[f"pdf_text_{idx}"],
documents=[sentence],
metadatas={"line_number": idx, "text": sentence}
)
def query_pdf_data(collection, query, retriever_model):
results = collection.query(
query_texts=[query],
n_results=3
)
context = " ".join([doc for doc in results["documents"][0]])
answer = retriever_model(f"Context: {context}\nQuestion: {query}")
return answer, results["metadatas"]
# Streamlit Interface
def main():
image = Image.open('LOGO.PNG')
st.image(
image, width=250)
st.title("PDF Chatbot with Retrieval-Augmented Generation")
st.write("Upload a PDF, and ask questions about its content!")
# Initialize components
client, collection = setup_chromadb()
retriever_model = pipeline("text2text-generation", model="google/flan-t5-small") # Free LLM
# File upload
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
if uploaded_file:
try:
# Clear existing data
collection = clear_collection(client, "pdf_data")
st.info("Existing data cleared from the database.")
# Extract and add new data
pdf_text = extract_text_from_pdf(uploaded_file)
st.success("Text extracted successfully!")
st.text_area("Extracted Text:", pdf_text, height=300)
add_pdf_text_to_db(collection, pdf_text)
st.success("PDF text has been added to the database. You can now query it!")
except Exception as e:
st.error(f"Error extracting text: {e}")
query = st.text_input("Enter your query about the PDF:")
if query:
try:
answer, metadata = query_pdf_data(collection, query, retriever_model)
st.subheader("Answer:")
st.write(answer[0]['generated_text'])
st.subheader("Retrieved Context:")
st.write(answer)
for meta in metadata[0]:
st.write(meta)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if __name__ == "__main__":
main()
|